
Miscellaneous Graph Algorithms

1 Counting Length k Paths
Given an unweighted graph with n vertices, how many paths of length k are there from one vertex to
another? First, let us represent the graph by an adjacency matrix A where Aij is equal to the number
of edges from i to j. Let us define B = A2. Then

Bij =
n∑

k=1

Aik ∗ Akj =
n∑

k=1

(# of length 1 path from i to k) ∗ (# of length 1 path from k to j)

Thus, Bij is the number of length 2 paths from i to j! Continuing in this fashion, the answer we
desire can be found by computing Ak! Using the method of repeated squaring, this can be found in
O(n3∗ log(k)). An example of using this idea is to answer the number of triangles in the graph, which
can be found by summing up the diagonals of A3 and dividing by 3.

2 Euler Path/Cycle
An Euler Path is a path in the graph which uses each edges exactly once. An Euler Cycle is a special
type of Euler path where the starting and the ending vertex of the path are the same. The verification
of the existence can be done in linear time using the following theorems (in both of the theorem, we
assume the graph is connected):

Theorem 2.1. Given an undirected graph G = (V, E), define the degree of a vertex u to be the number
of edges connected to u. Then an Euler cycle exists iff every vertex has even degree. An Euler path
exists iff exactly two vertices has odd degree. In this case the start and ending vertex of the path are
the two odd degree vertices.

Theorem 2.2. Given an directed graph G = (V, E), define the degree of vertex u to be the number of
outgoing edges from u minus the number of incoming edges to u. Then an Euler cycle exists iff every
vertex has degree 0. An Euler path exists iff exactly one vertex a has degree 1 and exactly one vertex
b has degree -1. In this case, the Euler path must start from a and end at b.

The above theorems gives the conditions for the existence of Euler path/cycle. However, it does
not tell us how to construct the Euler path/cycle. Algorithms do exists to construct the Euler path/cy-
cle, but we will not go into the details here. The main idea is to continuously remove edges to form
cycles until there are none left. For more detail, Google Fleury’s Algorithm.

3 Johnson’s Reweighting Algorithm
Suppose we want to compute the all-pair shortest path for a sparse graph with negative weight edges.
We can definitely use the Floyd Warshall algorithm, but the time complexity if O(V 3). Instead, we
can try reweighting the graph so that every edge weight is positive. After reweighting, we can then
run Dijkstra’s algorithm from each vertex to find all-pair shortest path. The question is then, how do
we reweight the graph so that shortest path remain unchanged?



3.1 Shortest Path Preserving Reweighting
The first idea is to find the most negative weight edge in the graph and scale it up to 0 weight. At the
same time, we will also increase every other edge by the same amount. While this may look sound,
it does not preserve shortest path - the shortest path in the original graph may not be the same as the
one in the reweighted graph. This is because a path with more edge will be ”penalized” more than a
path with less edges.

Instead, we define a height function h : V → Z on each vertex. Furthermore, let us assume the
height function satisfies that for any edge (u, v), w(u, v) + h(u) − h(v) ≥ 0, where w(u, v) is the
cost of edge (u, v). For now, let us assume we have such a function available to us (we will worry
about finding the function later). Given such a function, let us reweight each edge (u, v) such that the
reweighted cost, w(u, v), is equal to w(u, v) + h(u)− h(v).

By definition of h, it is clear that the reweighted graph has no negative weight edge. Now, let us
consider a path P from u to v. It is easy to see that if cost(P ) is the cost of the path in the original graph
and cost(P ) is the cost in the reweighted graph, then cost(P ) = cost(P ) + h(u)− h(v). Thus, every
path from u to v are scaled up by the same amount. So the shortest path from u to v in the original
graph must be the same as in the reweighted graph. In fact, if P is the shortest path from u to v, we
can recover cost(P ) from cost(P ) by rearranging the equation cost(P ) = cost(P )− h(u) + h(v).

3.2 Finding the Height Function
The only thing that remains is to find the height function itself. Rearranging the equations, we get that
for every edge (u, v), h(v) ≤ w(u, v) + h(u). This equation should look familiar because it showed
up in the relax(u, v) function when we are talking about shortest path! In fact, we can define h
based on shortest path!

Let us add a node S to the graph and connect S to every vertex with a weight 0 edge. Let us define
h(u) to be the cost of the shortest path from S to u. Then by definition of shortest path, we would
get h(v) ≤ w(u, v) + h(u), ∀(u, v) ∈ E. Thus, to obtain the height function, all we need is to run
Bellman Ford once. Note what we add a new node S and and all the 0 weight edges to make sure that
h(u) ≤ 0 for all vertices u; things get screwed up if h(u) =∞.

3.3 Time Complexity
The reweighting algorithm requires us to run Bellman Ford once to find the height function, which
take O(V E). Reweighting each edges takes O(E) and running a Dijkstra from each vertex takes
O(V Elog(V )). Finally, readjusting the cost of the shortest path from the reweighted graph to the
original graph take O(V 2). Overall, the time complexity is O(V Elog(V )). For a sparse graph, this is
much better than Floyd Warshall, which require O(V 3). Of course, if the graph is dense, then running
Bellman Ford itself is almost as costly as Floyd Warshall and we would be better off not using the
reweighting algorithm.


