
Dynamic Programing – Presentation 1
1) The problem:

You and a friend are playing a game using an n-sided dice labeled from 1 to n. You first throw the dice
and record the number showing up. Then your friend throws the dice. If his toss is larger than yours,
than your friend wins. If his toss is the same, then he toss again. Otherwise, it is your turn to toss the
dice. You win if your toss is larger than your friend's toss. Otherwise, you keep tossing if it's the same,
and lose your turn if it's smaller. The game continues until one of you win. Given n, return the
probability that you win.

Some things to notice:
1: You cannot lose against a roll of 1 (since you re-roll ties).
2: You cannot beat a roll of n.
3: The game necessarily terminates after at most n-1 rounds. (Since a loss implies that the new

number to beat is smaller than the previous number).

2) Simulation results:

Because my probability skills are a little rusty, I wrote a quick little simulator to estimate what the
probabilities should look like:

private boolean playGame(int n)
{

Random random = new Random();
int toBeat = random.nextInt(n)+1;
int turn = 0;
while(true)
{

int roll = random.nextInt(n)+1;
while(roll == toBeat)

roll = random.nextInt(n)+1;
if (roll > toBeat)

return turn%2 != 0;
toBeat = roll;
turn ++;

}
}

20000000 games with n from 2 to 20:
N Wins Percentage
2 999233 0.4996165
3 833520 0.41676
4 796221 0.3981105
5 779738 0.389869
6 769729 0.3848645
7 764494 0.382247
8 761285 0.3806425
9 758771 0.3793855
10 753560 0.37678
11 753584 0.376792
12 750990 0.375495
13 748517 0.3742585

14 747935 0.3739675
15 746843 0.3734215
16 746375 0.3731875
17 745597 0.3727985
18 746141 0.3730705
19 745482 0.372741
20 744136 0.372068

3) Solution:

A. Recursive DP Solution

private static double[] memo;
private static double recursiveSolutionPublic{

memo = new double[n];
for (int i = 0; i < n;i++)

memo[i] = -1;

double probWin = 0;
for (int i = 1; i<=n;i++)
{

probWin += 1.0/((double)n) * recursiveSolution(n,i);
}
return probWin;

}

/**
 * Recursive solution
 * @param n
 * @param toBeat
 * @return
 */
public static final double recursiveSolution(int n, int toBeat)
{

if (memo[toBeat-1]>-1)
return memo[toBeat-1];

double probWin =(n-toBeat)/(double)(n - 1);//subtract one because the
result toBeat is not allowed to occur

for (int i = 1; i < toBeat;i++)
{

probWin += 1.0/((double)(n-1)) * (1.0- probabilityDP(n,i));
}
memo[toBeat-1] = probWin;
return probWin;

}

B. Iterative DP Solution

public static final double probabilityDPIterative(int n)
{

double[] memo = new double[n];
for (int i = 0; i < n;i++)

memo[i] = -1;

memo[0] = 1.0;

for (int toBeat = 2;toBeat<= n;toBeat++)
{

double probWin =(n-toBeat)/(double)(n - 1);//subtract one
because the result toBeat is not allowed to occur

for (int i = 1; i < toBeat;i++)
{

probWin += 1.0/((double)(n-1)) * (1.0- memo[i-1]);
}
memo[toBeat-1] = probWin;

}

double probWin = 0;
for (int i = 1; i<=n;i++)
{

probWin += 1.0/((double)n) * memo[i-1];
}
return probWin;

}

Note: With a little bit of cleverness, you could almost certainly re-arrange this to eliminate the
inner loop and reduce the memo array to just one, or perhaps two, numbers.

