
Shortest Path

The Floyd-Warshall Algorithm

The Problem

Given a weighted directed graph G with
vertices (v1, v2, …, vn)
We want to know the shortest path from
any point a to any point b in G
This is called an All-Pairs Shortest Path
Problem

The Solutions

We can always use Dijkstra’s algorithm or
the Bellman-Ford’s algorithm
But they’re pretty slow when the graph is
dense

Worst case for Dijkstra’s: O(|V|3 log |V|)
Worst case for Bellman-Ford: O(|V|4)

Floyd-Warshall Algorithm
Algorithm FloydWarshall(G)

for i 1 to n do
for j 1 to n do

if i == j then
D0[i,j] 0;

else if (vi,vj) is an edge in G then
D0[i,j] w(vi,vj); /* <-- weight function w */

else
D0[i,j] +∞;

for k 1 to n do
for i 1 to n do

for j 1 to n do
Dk[i,j] min{Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j]};

return matrix Dn

Example

http://www.pms.ifi.lmu.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization

Sample C++ Code
#include <vector>
typedef unsigned int uint;
typedef std::vector< std::vector<uint> > matrix;
#define INF ~0U

struct Edge {
Edge *next;
uint end;
uint weight;

};

void floyd_warshall(std::vector<Edge*> graph)
{
matrix dist;
matrix pred;

uint size = graph.size();
dist.resize(size);
pred.resize(size);

/* Initialization */
for(uint i = 0; i < size; ++i) {
dist[i].resize(size);
pred[i].resize(size);
for(uint j = 0; j < size; ++j) {
pred[i][j] = INF;
if(i == j)
dist[i][j] = 0;

else
dist[i][j] = INF;

}
}

/* Import graph */
for(uint i = 0; i < size; ++i) {
Edge *iter = graph[i];
while(iter) {
dist[i][iter->end] = iter->weight;
pred[i][iter->end] = i;
iter = iter->next;

}
}

/* Algorithm main loop */
for(uint k = 0; k < size; ++k) {
for(uint i = 0; i < size; ++i) {
for(uint j = 0; j < size; ++j) {
if(dist[i][k] == INF || dist[k][j] == INF)
continue;

if(dist[i][j] > dist[i][k] + dist[k][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
pred[i][j] = pred[k][j];

}
}

}
}

// TODO: Do something with the results here
// dist[i][j] is now the shortest distance between every two vertices, i and j,
// or INF if there is no such path
// pred[i][j] == i if the shortest path goes directly from i to j
// Otherwise the shortest path from i to j is made up of the
// shortest path from i to pred[i][j] + the edge from pred[i][j] to j

}

Why does it work?

Invariant: after the kth iteration of the outer
loop has finished, Dk[i,j] contains the
shortest path for all i and j.
Before the algorithm starts, D0[i,j] contains
the shortest path from vi to vj without any
intermediate vertices invariant holds
true

Why does it work?

Assume the invariant is true after the k-1th

iteration
During the kth iteration, Dk[i,j] will contain either
Dk-1[i,j] or (Dk-1[i,k] + Dk-1[k,j]), where Dk-1[i,k] =
shortest path from vi to vk, and Dk-1[k,j] = shortest
path from vk to vj
Then Dk[i,j] will choose the shorter path between
the two best paths, so Dk[i,j] must contain the
shortest path from vi to vj invariant holds true

Why does it work?

By induction, the invariant must hold for
every iteration of the outer loop
After the outer loop has finished, Dn[i,j] will
contain the shortest path vi to vj using any
vertices from v1 to vn thus proves the
correctness of the Floyd-Warshall
algorithm

Runtime
Algorithm FloydWarshall(G)

for i 1 to n do
for j 1 to n do

if i == j then
D0[i,j] 0;

else if (vi,vj) is an edge in G then
D0[i,j] w(vi,vj); /* <-- weight function w */

else
D0[i,j] +∞;

for k 1 to n do
for i 1 to n do

for j 1 to n do
Dk[i,j] min{Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j]};

return matrix Dn

O(|V|3)

When does it work/not work?

Does not work when the graph has a
negative cycle
Works when it doesn’t contain any
negative cycles, even when it has negative
edges

Applications

Shortest paths in directed graphs.
Transitive closure of directed graphs.
Inversion of real matrices (Gauss-Jordan
algorithm).
Optimal routing. In this application one is
interested in finding the path with the maximum
flow between two vertices. The edge weights
represent fixed constraints on flow. Path weights
represent bottlenecks.
Testing whether an undirected graph is bipartite.

References

Algorithm Design Foundation, Analysis,
and Internet Examples. Michle T. Goodrich,
Roberto Tamassia. ch 7.2.1
Wikipedia:
http://en.wikipedia.org/wiki/Floyd-
Warshall_algorithm
Igor’s notes from last year. Thank you ☺

http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

	Shortest Path
	The Problem
	The Solutions
	Floyd-Warshall Algorithm
	Sample C++ Code
	Why does it work?
	Why does it work?
	Why does it work?
	Runtime
	When does it work/not work?
	Applications
	References

