Shortest Paths

-Introduction
i) Definition
i) Special property

iii) Edge Relaxation

-Dijkstra’s algorithm(aka lowest cost first)

i) Sample Applet
ii) Applications

Problem statement:

given a graph G with n vertices and m edges the minimal path with respect to the number of vertices can
be found by doing a BFS on the graph. However, given the same graph with a weighting function f(e)
such that e is in the set of edges, f(e) is in the set of positive real numbers, we want to find the minimal

path from vertex vO to all vi in the graph.

The Greedy condition:

given an optimaization problem if we can find the optimal global solution based on optimal local solutions
to subsections of this problem then we say that the given problem satisfies the greedy condition. It is
Because the shortest paths problem satisfies this condition that Dijkstra’s algorithm works.

Edge relaxation:

Edge relaxation is a technique used to incrementally assign values to the paths from vO to all vi in the
given graph G. all shortest path algorithms use some form of edge relaxation to make correct
optimal local choises. Dijkstra’s algorithm looks like :

for all z adjacent to vi
if(D[vi]+f(e(vi,z)) < D[z])
D[z] = D|vi]+f(e(vi,z));

public abstract class Dijkstra {
f** Execute Dijkstra's algorithm, */
public void execute(lnspectableGraph g, Vertes source) |
graph = g;
dijkstraVisit(source);

JE* Attribute for vertex distances, *f
protected Object DIST — new Object():
/¥ Set the distance of a vertex. !
protected void setDist(Vertex v, int d) |
v.set(DIST, new Integer(d));

J** Get the distance of a wvertox from the source vertex. This methad
® returns the length of @ shortest path from the source to u after
* method execute has bean called, L

Public int getDist(Vertex u) {

; return ([Integer) u.get{DIST)).intValue();

[** This abstract method must be defined by subclasses.
¥ Breturn weight of edge ¢. */

Protected abstract int weight(Edge &)

{7 Infinity value. %/

public static final int INFINITE — Integer MAX_VALUE,

B lnput graph. ¥/

Protected InspectableGraph graph:

¥k Auxiliary pricrity queue. *f

Protected PricrityQueue @

protected void dijkstraVisit (Vertex v) {
£ nitialize the prierity queue @ and store all the vertices in it
@& new ArrayHeap(new IntegerComparater(]);
for (Vertexlterator vertices = graph.vertices(); vertices.hasNext();) {
Vertex v — wvertices.nextVertox();
int u_dist;
if (u==v)
u_dist = 0
else
u_dist — INFINITE;
£ setDist{u, u_dist);
Lecator u_loc = Q.insert(new Intoger(u_dist), u);
setloc(u, u_loc);
!
£ grow the cloud, ore vertex at a time
while (!QisEmpty(]) {
A/ remove from Q and insert inte cloud a vertex with minimum distance
Locator u loc = Q.min();
Vertex u - getVertex(u_loc);
int u_dist — getDist(u loc),
Q.rmmwe[u-lnc]; 4 remove u from the priority quaue
setDist{u, u_dist): // the distance of u is final
destroyLoc(u); // remove the lecator associated with u
if (u_dist - — INFINITE)
continue; // unreachable vertices are not processed
#4 examine all the neighbors of 1 and update their distances
for (Edgelterator edges — graph.incidentFdges{u): edges hasNext();) {
Edge e — edges.nextEdge();
Vertex z — graph.opposite(u,e);
if (hasLoc{z)) { // check that z is in @, i.e., it is not in the cloud

int e_weight = weighl{e);

Locator z_loc = getloc(z);

int 7 dist = getDist(z loc);

if [u.dist | e_weight < z_dist) // relaxation of edge e = (u,2)
Q.replaceKey(z loc, new Integer(u_dist + e_weight));

S Aftribute for wertex locators in the priority queus Q. */

protected Object LOL = new Object(]);
FE® Check if thers is a locator associated with a werlesx
protected booloan hasLoc{Vertex v)] {

return v.has{LOC];
}
PR Get the locator in @ of a verter., ¥/
protectod Locator getloc{Vertex v) |

return (Lacator) v.get{LOC),

e

S¥¥ Busooiate with a uverfex ke locator in D */

protected void sollec(Vertex v, Locator |} {
wset(LOC, 1);

1

J** Remaowe the localor associated with a vertex. "/

protected void destroyLoo(Vertex w) |
v.destray({LOC);

S** Get the vertex asseciated with a locator. */
protected Vertes getVertex(Locator 1} |
return (Mertex) Lelement(};

JHE Lol Lhe distance of a veriex givan its locator in . #/
protected int getDist(Locator [) {
return ((Integer) |key()).intValue();

ST A specialization of class Dijkstra that extracts edge weights from
* decorations, *7
public class MyDijkstra extends Dijkstra {
S Attribute for edge weights, *7
protoected Object WEIGHT;
fFF Constructor that sets the weighl attribute. */
public MyDijksteal Object weight_attribute) {
WEIGHT = weight_attribute;

A*™ The edge weight is slored in attribute WEIGHT of the edge. */
public int weight{Ldge) {

raturn [{Integer) e getOWEIGH T)) intValue();

The Algorithm:

Dijkstra(graph G , vertex v0)

{

// initialization

Priority Queue q = new PriorityQueue();
D[v] = 0;

q.push(v0,D[v0]);

for all vi !=v0

D[vi] = infinity;
q.push(vi,D[v0])
//start of algorithm

vertex temp;
while(!q.isEmpty())
{

temp = q.getMin();
for all vertices z adjacent to temp

if(D[temp]+weight(temp,z) <D[z])
D[z] = D[temp]+weight(temp,z);
q.changeKey(z,D[z]);

}

return D[];

Sample Applet:

Proof of correctness for Dijkstra’s algorithum:

Intuitively we can see why Dikstra’s algorithm works which is because it is vey similer to BFS but it uses

a priority queue instead of a queue with the weights as the keys. At every iteration the vertex with the
minimal weight is chosen and edge relation is preformed on its neighbores.

for a formal proof see goodrich book page 346.

Time analysis for the algorithm:

We are looking at simple (no loops or parallel edges) non-negative graphs so we can’t have comple
graphs as input . In other words the degree of every vertex is n-1. Recall that the sum of the degrees of all
the verticies < 2 * number of edges at worst case we will have that the degree of every vertex is n-1 which
means that in this case Sum(deg(all vi)) = 2 * # of edges. So, for a graph with n vertices we have that the
sum of the degrees of the vertices is (n"2)-n. This implies that we have ((n*2)-n)/2 edges to consider. so
for a graph with n edges we have running time is O(n*2 log(n)).

A best case senarion would be if we had a Spanning Tree. In this case we have n-1 edges to consider so
the running time is simply O(n log(n)).

Applications of dijkstra’s algorithm:

The most obvious applications arise in transportation or communications, such as finding
the best route to drive between Chicago and Phoenix or figuring how to direct packets to

a destination across a network.

Consider the problem of image segmentation, that is, separating two characters in a
scanned, bit-mapped image of printed text. We need to find the separating line between
two points that cuts through the fewest number of black pixels. This grid of pixels can be
modeled as a graph, with any edge across a black pixel given a high cost. The shortest
path from top to bottom defines the best separation between left and right.

A major problem in speech recognition is distinguishing between words that sound alike
(homophones), such as fo, two, and too. We can construct a graph whose vertices
correspond to possible words, with an edge between possible neighboring words.

If the weight of each edge measures the likelihood of transition, the shortest path across

the graph defines the best interpretation of a sentence.

Suppose we want to draw an informative picture of a graph. The center of the page
should coorespond to the ~ center" of the graph, whatever that means. A good definition
of the center is the vertex that minimizes the maximum distance to any other vertex in the
graph. Finding this center point requires knowing the distance (i.e. shortest path) between

all pairs of vertices.

References:

-Algorithm Design Foundation, Analysis, and Internet Examples. Michle T. Goodrich, Roberto tamassia. chapter 7.

-Mathimatical Programming.
-shortest path.
-Notes from last years shortest path seminar...

