
Shortest Paths
-Introduction

i) Definition

ii) Special property

iii) Edge Relaxation

-Dijkstra’s algorithm(aka lowest cost first)
i) Sample Applet

ii) Applications

Problem statement:
given a graph G with n vertices and m edges the minimal path with respect to the number of vertices can
be found by doing a BFS on the graph. However, given the same graph with a weighting function f(e)
such that e is in the set of edges, f(e) is in the set of positive real numbers, we want to find the minimal
path from vertex v0 to all vi in the graph.

The Greedy condition:
given an optimaization problem if we can find the optimal global solution based on optimal local solutions
to subsections of this problem then we say that the given problem satisfies the greedy condition. It is
Because the shortest paths problem satisfies this condition that Dijkstra’s algorithm works.

Edge relaxation:

Edge relaxation is a technique used to incrementally assign values to the paths from v0 to all vi in the
given graph G. all shortest path algorithms use some form of edge relaxation to make correct
optimal local choises. Dijkstra’s algorithm looks like :

for all z adjacent to vi
if(D[vi]+f(e(vi,z)) < D[z])

D[z] = D[vi]+f(e(vi,z));

The Algorithm:
Dijkstra(graph G , vertex v0)
{

// initialization

Priority Queue q = new PriorityQueue();
D[v] = 0;
q.push(v0,D[v0]);
for all vi != v0
{

D[vi] = infinity;
q.push(vi,D[v0])

}

//start of algorithm

vertex temp;
while(!q.isEmpty())
{

temp = q.getMin();
for all vertices z adjacent to temp
{

if(D[temp]+weight(temp,z) <D[z])
D[z] = D[temp]+weight(temp,z);
q.changeKey(z,D[z]);

}
}
return D[];

}

Sample Applet:

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/DijkstraApp.shtml?demo1

Proof of correctness for Dijkstra’s algorithum:

Intuitively we can see why Dikstra’s algorithm works which is because it is vey similer to BFS but it uses
a priority queue instead of a queue with the weights as the keys. At every iteration the vertex with the

 minimal weight is chosen and edge relation is preformed on its neighbores.

for a formal proof see goodrich book page 346.
http://ww3.algorithmdesign.net/sample/ch07-weights.pdf

Time analysis for the algorithm:

We are looking at simple (no loops or parallel edges) non-negative graphs so we can’t have comple
graphs as input . In other words the degree of every vertex is n-1. Recall that the sum of the degrees of all
the verticies < 2 * number of edges at worst case we will have that the degree of every vertex is n-1 which

 means that in this case Sum(deg(all vi)) = 2 * # of edges. So, for a graph with n vertices we have that the
sum of the degrees of the vertices is (n^2)-n. This implies that we have ((n^2)-n)/2 edges to consider. so
for a graph with n edges we have running time is O(n^2 log(n)).
A best case senarion would be if we had a Spanning Tree. In this case we have n-1 edges to consider so
the running time is simply O(n log(n)).

Applications of dijkstra’s algorithm:

• The most obvious applications arise in transportation or communications, such as finding
 the best route to drive between Chicago and Phoenix or figuring how to direct packets to
 a destination across a network.

• Consider the problem of image segmentation, that is, separating two characters in a
 scanned, bit-mapped image of printed text. We need to find the separating line between
 two points that cuts through the fewest number of black pixels. This grid of pixels can be
 modeled as a graph, with any edge across a black pixel given a high cost. The shortest
 path from top to bottom defines the best separation between left and right.

• A major problem in speech recognition is distinguishing between words that sound alike
 (homophones), such as to, two, and too. We can construct a graph whose vertices
 correspond to possible words, with an edge between possible neighboring words.
 If the weight of each edge measures the likelihood of transition, the shortest path across
 the graph defines the best interpretation of a sentence.

• Suppose we want to draw an informative picture of a graph. The center of the page
 should coorespond to the ``center'' of the graph, whatever that means. A good definition
 of the center is the vertex that minimizes the maximum distance to any other vertex in the
 graph. Finding this center point requires knowing the distance (i.e. shortest path) between
 all pairs of vertices.

References:

-Algorithm Design Foundation, Analysis, and Internet Examples. Michle T. Goodrich, Roberto tamassia. chapter 7.
-Mathimatical Programming. http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/main/index.shtml
-shortest path. http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK4/NODE162.HTM
-Notes from last years shortest path seminar...

