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Problem statement:
given a graph G with n vertices and m edges the minimal path with respect to the number of vertices can
be found by doing a BFS on the graph. However, given the same graph with a weighting function f(e)
such that  e is in the set of edges, f(e) is in the set of positive real numbers, we want to find the minimal 
path from vertex v0 to all vi in the graph.

The Greedy condition:
given an optimaization problem if we can find the optimal global solution based on optimal local solutions  
to subsections of this problem then we say that the given problem satisfies the greedy condition. It is 
Because the shortest paths problem satisfies this condition that Dijkstra’s algorithm works.

Edge relaxation:

Edge relaxation is a technique used to incrementally assign values to the paths from v0 to all vi in the 
given graph G. all shortest path algorithms use some form of edge relaxation to make correct 
optimal local choises. Dijkstra’s algorithm looks like :

for all z adjacent to vi 
if(D[vi]+f(e(vi,z)) < D[z])

D[z] = D[vi]+f(e(vi,z));











The Algorithm:
Dijkstra( graph G , vertex v0)
{

// initialization

Priority Queue q  = new PriorityQueue();
D[v] = 0;
q.push(v0,D[v0]);
for all vi != v0
{

D[vi] = infinity;
q.push(vi,D[v0])

}

//start of algorithm

vertex temp;
while(!q.isEmpty())
{

temp =  q.getMin();
for all vertices z adjacent to temp
{

if(D[temp]+weight(temp,z) <D[z])
D[z] =  D[temp]+weight(temp,z);
q.changeKey(z,D[z]);

}
}
return D[ ];

}



Sample Applet:

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/DijkstraApp.shtml?demo1 

Proof of correctness for Dijkstra’s algorithum:

Intuitively we can see why Dikstra’s algorithm works which is because it is vey similer to BFS but it uses
a priority queue instead of a queue with the weights as the keys. At every iteration the vertex with the

            minimal weight is chosen and edge relation is preformed on its neighbores. 

for a formal proof see goodrich book page 346.
http://ww3.algorithmdesign.net/sample/ch07-weights.pdf 

Time analysis for the algorithm:

We are looking at simple (no loops or parallel edges) non-negative graphs so we can’t have comple 
graphs as input . In other words the degree of every vertex is n-1. Recall that the sum of the degrees of all
the verticies <  2 * number of edges at worst case we will have that the degree of every vertex is n-1 which 

 means that in this case Sum(deg(all vi)) = 2 * # of edges. So, for a graph with n vertices we have that the
sum of the degrees of the vertices is (n^2)-n. This implies that we have ((n^2)-n)/2 edges to consider. so 
for a graph with n edges we have running time is O(n^2 log(n)).
A best case senarion would be if we had a Spanning Tree. In this case we have n-1 edges to consider so 
the running time is simply O(n log(n)). 

   



Applications of dijkstra’s algorithm:

•    The most obvious applications arise in transportation or communications, such as finding
      the best route to drive between Chicago and Phoenix or figuring how to direct packets to
      a destination across a network.

•    Consider the problem of image segmentation, that is, separating two characters in a 
      scanned, bit-mapped image of printed text. We need to find the separating line between
      two points that cuts through the fewest number of black pixels. This grid of pixels can be
      modeled as a graph, with any edge across a black pixel given a high cost. The shortest 
      path from top to bottom defines the best separation between left and right.

•    A major problem in speech recognition is distinguishing between words that sound alike
     (homophones), such as to, two, and too. We can construct a graph whose vertices 
     correspond to possible words, with an edge between possible neighboring words. 
     If the weight of each edge measures the likelihood of transition, the shortest path across
     the graph defines the best interpretation of a sentence. 
 

•    Suppose we want to draw an informative picture of a graph.   The center of the page
     should coorespond to the ``center'' of the graph, whatever that means. A good definition 
     of the center is the vertex that minimizes the maximum distance to any other vertex in the
     graph. Finding this center point requires knowing the distance (i.e. shortest path) between 
     all pairs of vertices.
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