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Number Theory 
Greatest Common Divisor and its applications. 
 

Number Theory is a branch of mathematics that explores the properties of integers, most 

of the time only the natural numbers. Most problems in elementary Number Theory are 

easy to state and understand, because they’re just extensions of grade school 

mathematics. At the same time, the solutions to these problems are not simple, usually 

requiring ingenious insights that are beautiful and fascinating. We will explore the 

problem of finding the greatest common divisor in this lecture. 

 

Before we begin, there are a few definitions and notations that should be addressed. 

Def: An integer a is said to be divisible by another integer b if we can write bqa = . 

(where q is known as the quotient of a and b) This is often denoted as a|b. 

Def: Given any two integers a and b, there exists a unique pair of integers q and r such 

that rqba +⋅=  where br <≤0 . This is known as the Division Algorithm. (it is 

actually a theorem, not an algorithm) 

Def:  Given two positive integers a and b, the greatest common divisor c is a number 

such that: 

 i)  c is a common divisor of a and b. In other words, c|a and c|b. 

 ii) for any other common divisors d of a and b, cd ≤ . 

 This is also denoted as gcd(a, b) = (a, b).  

 

Consider the following methods of finding the gcd of a and b. 

1) Brute force it! Consider just using a loop and checking if both integers are divisible by 

the loop counter. If it is then set it as the current maximum. The number of iterations 

this method would take is proportional to the minimum of a and b as no integer greater 

than this minimum will still be a factor of a and b. For large integers, this becomes 

infeasible. 

2) Prime factorize both integers and take the intersection between them. However, 

factoring large integers is also infeasible. 

 

As it turns out, there is a simple algorithm, called the Euclidean Algorithm that finds the 

gcd very quickly. Consider the division algorithm for a and b: (assuming a > b) 

  11 rqba +⋅=  for br <≤ 10  

Next, apply the division algorithm again, but this time using b and 1r : 

  221 rqrb +⋅=  for 120 rr <≤  

And again with r and 1r : 

  3321 rqrr +⋅=  for 2130 rr <≤  

  4432 rqrr +⋅=  for 340 rr <≤  

   :   : 

   :   : 

  nnnn rqrr +⋅=
−− 12  for 10

−
<≤ nn rr  

  011 +⋅=
+− nnn qrr  
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Notice that the remainders for each successive equation is decreasing, ie: 

  0........4321 ≥>>>>> rrrrb  

Since each remainder is a positive integer, this sequence cannot contain more than b 

terms and so there must exist a line where the remainder becomes 0. 

 

Claim: cbarn == ),gcd( . 

To prove this, we will first prove two lemmas. 

 

Lemma 1: 

If a, b, m, and n are integers, and if c|a and c|b, then c|(ma+nb). 

 

Proof: 

Since c|a and c|b, there must exist integers e and f such that a = ce and b = cf. Hence, 

ma+nb = m(ce)+n(cf) = c(me+nf). Consequently, we see that c|(ma+nb). 

□ 

 

Lemma 2: 

Let a, b, and c be integers. Then (a + cb, b) = (a, b). 

 

Proof: 

Let a, b, and c be integers. We will show that the common divisors of a and b are exactly 

the same as the common divisors of a + cb and b. This will show that (a + cb, b) = (a, b). 

Let e be a common divisor of a and b. By Lemma 1, e|(a + cb), so e is a common divisor 

of a + cb and b. If f is a common divisor of a + cb and b, then by Lemma 1, we see that f 

divides (a + cb) – cb, which is equal to a. So f is a common divisor of a and b. Hence, 

(a+cb, b) = (a, b). 

□ 

 

Now we are ready to proceed with the proof of the above claim. 

Proof of Claim: 

By Lemma 2, it follows that ( 11 rqb +⋅ , b) = (a, b) = (b, 1r ) = ( 1r , 2r ) = ( 2r , 3r ) = ……….= 

( 2−nr , 1−nr ) = ( 1−nr , nr ) = ( nr , 0) = nr . 

 

Enough with the proofs, here is the algorithm: 

 int gcd( int a, int b ) { 

  if( b == 0 ) return a; 

  else return gcd( b, a%b ); 

 } 

 

The algorithm follows directly from the above repeated division algorithm where the first 

column is the first argument and the second column (directly to the right of the equal 

sign) is the second argument to this function. 

It turns out that the worst case input to the Euclidean Algorithm is two successive 

Fibonacci numbers. Given fn+1 and fn+2 successive Fibonacci numbers, then the Euclidean 

Algorithm takes exactly n divisions to show that (fn+1, fn+2) = 1. 
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Furthermore, Lamé’s Theorem shows that the number of divisions needed to find the 

greatest common divisor of two positive integers using the Euclidean Algorithm does not 

exceed five times the number of decimal digits in the smaller of the two integers. It turns 

out that as a result, assuming that a > b, the gcd(a, b) can be found using O((log2a)
3
) bit 

operations.  

 

We can also solve the problem of finding the Least Common Multiple, denoted as lcm(a, 

b), by using the following relation: 

),gcd(
),(

ba

ba
balcm

⋅
=  

This is useful when we want to add two fractions with different denominators. 

 

Now that we have seen how we could find the greatest common divisor of two numbers. 

Let’s extend this idea further to find integers x and y such that ax + by = (a, b). This is 

otherwise known as Bezout’s Identity. We first show that (a, b) is the smallest integer 

that can be written in the form ax + by. 

 

Proof: 

Consider the set of all positive integers of the form ax + by. Let k = au + bv be the 

smallest element of this set. (this must exist because of the Well-Ordering Principle) Let 

gcd(a, b) = c. The goal of the proof is to show that k = c. 

First we will show that k|a and k|b. 

If a = 0 then we k|a. If it is non-zero, then by the Division algorithm, there are integers q 

and r such that a = kq + r, where kr <≤0 . So: 

    r = a – kq 

     = a – (au + bv)q 

     = a(1 – uq) + b(-vq) 

But since k is the smallest element of the set, and r < k, it must imply that r = 0. Thus      

a = kq and so k|a. 

The same argument will show that k|b. 

Since c is the greatest common divisor of a and b, it follows that c|a and c|b. In other 

words, a = cr and b = cs, for integers r and s. Substituting this into our equation for k, we 

get: 

    k = au + bv 

     = (cr)u + (cs)v 

     = c(ru + sv) 

Because k and c are both positive, ru + sv must also be positive. Therefore we have that 

ck ≥ . But c is the greatest common divisor so it must be the case that k = c. In other 

words, c is the smallest positive integer that can be written in the form ax + by. 

□ 

To solve linear equations such as ax + by = e for some integer e, it must be the case that 

c|e and in this case, there are infinitely many solutions. If not, then there are no solutions. 

For now, let’s look at how we can modify our code to find solutions to ax + by = c. 
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Consider again the division algorithm of a and b, where b > a. 

    11 rqba +⋅=  where 11 qbar ⋅−=  

Then we can equivalently write the second equation as: 

    

)1()(

)(

212

21

212

qqbqa

qqbab

qrbr

++−=

⋅⋅−−=

⋅−=

 

The third equation as: 

    

)()1(

))1()(()(

3213132

32121

3213

qqqqqbqqa

qqqbqabqa

qrrr

−−−++=

++−−−=

−=

 

Continuing in this fashion, we will eventually get to rn as a linear combination of a and b, 

which is what we’re after. Here is an implementation of the Extended Euclidean 

Algorithm. 

     

 // struct to hold our solution 

 struct Triple { 

  int g, x, y; 

  Triple( int d, int w, int e ) : g(d), x(w), y(e) {} 

 }; 

 

 // extended gcd, returns <g, x, y> such that (A,B) = g and Ax + By = g 

 Triple egcd( int A, int B ) { 

  if( B == 0 ) return Triple( A, 1, 0 ); 

  Triple tr = egcd( B, A%B ); 

  return Triple( tr.g, tr.y, tr.x – A/B * tr.y ); 

 } 

 

The code looks very similar to that of our original code, except we do a little more 

bookkeeping by using a struct. The first line is just as before, the base case of the 

recursion. If B is zero then the greatest common divisor is the first argument, and so A = 

A(1). Line two is the recursion, which solves the equation: 

    gtrytrBAxtrB ..)%(. =⋅+⋅  (1) 

but what we’re after is 

    gtrgtrytrBxtrA ..2.2.2 ==⋅+⋅   (2) 

To find the relationship between tr.x and tr2.x and tr.y and tr2.y, consider the division 

algorithm for A: 

      BAB
B

ArqBA %+=+=  

Substituting this into (1), we get: 

    

 
 
  gtrytr

B
AxtrBytrA

gtrytrB
B

AytrAxtrB

gtrytrB
B

AAxtrB

.)..(.

....

..)(.

=−⋅+⋅

=⋅−⋅+⋅

=⋅−+⋅

 



CPSC 490 Number Theory: GCD and the extended Euclidian algorithm 

 5 

Therefore, ytrxtr ..2 =  and   ytr
B

Axtrytr ...2 −= , which is exactly what the 

implementation does. 

 

To solve the general equation of ax + by = e, we first need to check if c divides e. In other 

words, we need to check if e = cq. If it is, then we can run the above algorithm to find x 

and y, such that: 

   cbyax =+  

Then we multiply our solution by q, to get: 

  
eyqbxqa

ecqbyaxq

=+

==+

)()(

)(
 

In general, if there exist one solution to this equation, then there must exist an infinite 

amount of solutions. This is generated by: 

    )('
c

btxx +=  and )('
c

atyy −=  

To see that ebyax =+ '' , substitute the general solution into our first equation: 

    

e

byax

c
abtby

c
abtax

c
atyb

c
btxa

=

+=

−++=

−++

)()(

))(())((
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