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Union Find

Introduction

I union-find is a disjoint sets datastructure

I each element belongs to one set, identified by the “leader”

I the datastructure supports 2 operations:

I Find(x): given x, find x’s leader

I Union(x, y): merge x’s and y’s set together under one leader
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Union Find

Simple Implementation

I Let us label the elements by integers 1 to n.

I Moreover, assign each element a direct superior.

I A leader’s direct superior would be itself.

int FIND( int x ) {

if( uf[x] == x ) return x; // x is the leader

return FIND( uf[x] );

}

void UNION( int x, int y ) {

uf[FIND( x )] = FIND( y );

}
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Union Find

Simple Implementation

I Find() simply follows the uf[] links up until it reaches the
leader

I Union() changes x’s leader to y’s, thus merging the two sets.
(we could also have done it the other way)

I the running time is not that great here.

I Find() takes linear time.

I Union() calls Find() twice.

I Find() is the limiting factor → how do we improve?
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Union Find

Betteer Implementation

I We would like to reduce the steps needed to find x’s leader as
much as possible.

I One technique for doing is is called “path compression”.

I suppose we have called Find(x) and got z.

I we could then change uf[x] to z, so next time, z is returned
right away when Find(x) is called.
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Union Find

Better Implementation

int FIND( int x ) {

if( uf[x] != uf[uf[x]] ) uf[x] = FIND( uf[x] );

return uf[x];

}

I the first line checks whether the path has length at least 2

I if it does we set uf[x] to the leader
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Union Find

How is This Better

I This doesn’t seem like an improvement

I Find(x) still takes linear time

I BUT, what about the next time?

I we need amortized analysis here(420)

I suppose we have n different people whose leader are all
themselves

I then we execute k Union() and Find() operations in some
unknown order

I our current implementation only require O(k log (n)) time
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Union Find

Even Better Implementation

If we apply another technique called “uion by rank”, we can reduce
the running time to “almost linear”.

I need an extra array

I each node will now have a rank, starting at 1

I rank[x] simply equals to the depth of the tree rooted at x

I remember that in Union() we have a choice of how to merge

I now with the rank, we can pick the shallower tree and point it
to the deeper one.

I this prevents any tree from becoming deeper than log(n)

I so by itself, untion by rank also guarantee a running time of
O(k log (n)) for k operations
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Union Find

Even Better Implementation

Here would be an implementation of union-by-rank. As a bouns,
this returns true if there really is some merge, false if x and y are
already in the same set.

bool UNION( int x, int y ) {

int xx = FIND( x ), yy = FIND( y );

if( xx == yy ) return false;

// make sure rank[xx] is smaller

if( rank[xx] > rank[yy] ) { int t = xx; xx = yy; yy = t; }

// if both are equal, the combined tree becomes 1 deeper

if( rank[xx] == rank[yy] ) rank[yy]++;

uf[xx] = yy;

return true;

}
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Union Find

Even Better Implementation

I Combining the two we will achieve O((k + n) log ∗(n))
I log ∗(n) is defined as

• log ∗(x) = 0 if x ≤ 1;
• log ∗(x) = 1 + log ∗ (log(x)) o/w

I for a value of n less than 264, log ∗(x) will be less than 5.

I you can find a proof in chapter 21 in the textbook.
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Minimum Spanning Tree

Introduction

I a tree is an undirected, connected, acyclic graph.

I there is exactly one path between every pair of vertices in a
tree

I a spanning tree of a given graph G=(V,E), is a tree T=(V,
E’) where E’ is a subset of E.

I a minimum spanning tree is the spanning tree with the
minimum cost
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Minimum Spanning Tree

Kruskal’s Algorithm

We will now introduce Kruskal’s algorithm.

I this is a greedy algorithm

I starting with no edge in the spanning tree

I take the shortest edge and add it to the tree

I now take the rest of the edge in order of incresing length

I add them only if tree properties are preserved

I repeat until all vertices are connected

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 15



Minimum Spanning Tree

Kruskal’s Algorithm

int uf[128];

struct Edge { // a structure to represent an edge

int u, v, w; // the two endpoints and the weight

bool operator<( const Edge &e ) const { return w < e.w; }

// a comparator that sorts by least weight

};

Edge edges[100000]; // the graph represented as a list of edges

int n, m; // the number of vertices and the number of edges

int kruskal() {

sort( edges, edges + m );

for( int i = 0; i < n; i++ ) uf[i] = i;

int trees=n, sum=0; // the number of trees (parties), and the total weight

for( int i = 0; i < m && trees > 1; i++ ) {

if( UNION( edges[i].u, edges[i].v ) ) {

trees--; // use edge i in the tree

sum += edges[i].w;

}

}

return sum;

}
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Minimum Spanning Tree

Union Find for MST

How is union find used here?

I first we sort the edge by increasing weight

I we do not need adjacenty list or matrix, a list of edges will be
enough

I elements in union find are the vertices

I initially every vertex are independent

I when we examine a new edge, we check weather the
endpoints are already in the same set

I if they are not then it is safe to use this edge

So why is this algorithm correct? What about its complexity?
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Minimum Spanning Tree

What Else?

I References:

• Frank and Igor’s CS490 notes.
• Cormen, Thomas H., et al. Introduction to Algorithms.

I homework help

I you will begin to present topics starting next week!
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