
CS490: Problem Solving in Computer Science

Lecture 8: Introductory Graph Theory III

Dustin Tseng
Mike Li

Wednesday January 16, 2006

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 1

Outline

� Union Find

� Minimum Spanning Tree

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 2

Union Find

� Union Find

� Minimum Spanning Tree

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 3

Union Find

Introduction

I union-find is a disjoint sets datastructure

I each element belongs to one set, identified by the “leader”

I the datastructure supports 2 operations:

I Find(x): given x, find x’s leader

I Union(x, y): merge x’s and y’s set together under one leader

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 4

Union Find

Simple Implementation

I Let us label the elements by integers 1 to n.

I Moreover, assign each element a direct superior.

I A leader’s direct superior would be itself.

int FIND(int x) {

if(uf[x] == x) return x; // x is the leader

return FIND(uf[x]);

}

void UNION(int x, int y) {

uf[FIND(x)] = FIND(y);

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 5

Union Find

Simple Implementation

I Find() simply follows the uf[] links up until it reaches the
leader

I Union() changes x’s leader to y’s, thus merging the two sets.
(we could also have done it the other way)

I the running time is not that great here.

I Find() takes linear time.

I Union() calls Find() twice.

I Find() is the limiting factor → how do we improve?

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 6

Union Find

Betteer Implementation

I We would like to reduce the steps needed to find x’s leader as
much as possible.

I One technique for doing is is called “path compression”.

I suppose we have called Find(x) and got z.

I we could then change uf[x] to z, so next time, z is returned
right away when Find(x) is called.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 7

Union Find

Better Implementation

int FIND(int x) {

if(uf[x] != uf[uf[x]]) uf[x] = FIND(uf[x]);

return uf[x];

}

I the first line checks whether the path has length at least 2

I if it does we set uf[x] to the leader

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 8

Union Find

How is This Better

I This doesn’t seem like an improvement

I Find(x) still takes linear time

I BUT, what about the next time?

I we need amortized analysis here(420)

I suppose we have n different people whose leader are all
themselves

I then we execute k Union() and Find() operations in some
unknown order

I our current implementation only require O(k log (n)) time

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 9

Union Find

Even Better Implementation

If we apply another technique called “uion by rank”, we can reduce
the running time to “almost linear”.

I need an extra array

I each node will now have a rank, starting at 1

I rank[x] simply equals to the depth of the tree rooted at x

I remember that in Union() we have a choice of how to merge

I now with the rank, we can pick the shallower tree and point it
to the deeper one.

I this prevents any tree from becoming deeper than log(n)

I so by itself, untion by rank also guarantee a running time of
O(k log (n)) for k operations

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 10

Union Find

Even Better Implementation

Here would be an implementation of union-by-rank. As a bouns,
this returns true if there really is some merge, false if x and y are
already in the same set.

bool UNION(int x, int y) {

int xx = FIND(x), yy = FIND(y);

if(xx == yy) return false;

// make sure rank[xx] is smaller

if(rank[xx] > rank[yy]) { int t = xx; xx = yy; yy = t; }

// if both are equal, the combined tree becomes 1 deeper

if(rank[xx] == rank[yy]) rank[yy]++;

uf[xx] = yy;

return true;

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 11

Union Find

Even Better Implementation

I Combining the two we will achieve O((k + n) log ∗(n))
I log ∗(n) is defined as

• log ∗(x) = 0 if x ≤ 1;
• log ∗(x) = 1 + log ∗ (log(x)) o/w

I for a value of n less than 264, log ∗(x) will be less than 5.

I you can find a proof in chapter 21 in the textbook.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 12

Minimum Spanning Tree

� Union Find

� Minimum Spanning Tree

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 13

Minimum Spanning Tree

Introduction

I a tree is an undirected, connected, acyclic graph.

I there is exactly one path between every pair of vertices in a
tree

I a spanning tree of a given graph G=(V,E), is a tree T=(V,
E’) where E’ is a subset of E.

I a minimum spanning tree is the spanning tree with the
minimum cost

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 14

Minimum Spanning Tree

Kruskal’s Algorithm

We will now introduce Kruskal’s algorithm.

I this is a greedy algorithm

I starting with no edge in the spanning tree

I take the shortest edge and add it to the tree

I now take the rest of the edge in order of incresing length

I add them only if tree properties are preserved

I repeat until all vertices are connected

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 15

Minimum Spanning Tree

Kruskal’s Algorithm

int uf[128];

struct Edge { // a structure to represent an edge

int u, v, w; // the two endpoints and the weight

bool operator<(const Edge &e) const { return w < e.w; }

// a comparator that sorts by least weight

};

Edge edges[100000]; // the graph represented as a list of edges

int n, m; // the number of vertices and the number of edges

int kruskal() {

sort(edges, edges + m);

for(int i = 0; i < n; i++) uf[i] = i;

int trees=n, sum=0; // the number of trees (parties), and the total weight

for(int i = 0; i < m && trees > 1; i++) {

if(UNION(edges[i].u, edges[i].v)) {

trees--; // use edge i in the tree

sum += edges[i].w;

}

}

return sum;

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 16

Minimum Spanning Tree

Union Find for MST

How is union find used here?

I first we sort the edge by increasing weight

I we do not need adjacenty list or matrix, a list of edges will be
enough

I elements in union find are the vertices

I initially every vertex are independent

I when we examine a new edge, we check weather the
endpoints are already in the same set

I if they are not then it is safe to use this edge

So why is this algorithm correct? What about its complexity?

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 17

Minimum Spanning Tree

What Else?

I References:

• Frank and Igor’s CS490 notes.
• Cormen, Thomas H., et al. Introduction to Algorithms.

I homework help

I you will begin to present topics starting next week!

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 8: Introductory Graph Theory III 18

	Outline
	Union Find
	Minimum Spanning Tree

