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Union Find

Introduction

union-find is a disjoint sets datastructure
each element belongs to one set, identified by the “leader”
the datastructure supports 2 operations:

Find(x): given x, find x's leader

vV vVv.v. v Yy

Union(x, y): merge x's and y's set together under one leader
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Union Find
e

Simple Implementation

» Let us label the elements by integers 1 to n.
» Moreover, assign each element a direct superior.

» A leader’s direct superior would be itself.

int FIND( int x ) {
if( uf[x] == x ) return x; // x is the leader
return FIND( uf[x] );
}

void UNION( int x, int y ) {
uf [FIND( x )] = FIND( y );
}
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Union Find

Simple Implementation

v

Find() simply follows the uf[] links up until it reaches the
leader

v

Union() changes x's leader to y's, thus merging the two sets.
(we could also have done it the other way)

the running time is not that great here.

Find() takes linear time.

Union() calls Find() twice.

Find() is the limiting factor — how do we improve?

vV v.v Yy
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Union Find

Betteer Implementation

» We would like to reduce the steps needed to find x's leader as
much as possible.

» One technique for doing is is called “path compression”.
» suppose we have called Find(x) and got z.

» we could then change uf[x] to z, so next time, z is returned
right away when Find(x) is called.
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Union Find

Better Implementation

int FIND( int x ) {
if( uf[x] != ufluf[x]] ) uf[x] = FIND( uflx] );
return uf [x];

» the first line checks whether the path has length at least 2

» if it does we set uf[x] to the leader
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Union Find

How is This Better

This doesn't seem like an improvement
Find(x) still takes linear time
BUT, what about the next time?

we need amortized analysis here(420)

vV vV.v. v Yy

suppose we have n different people whose leader are all
themselves

» then we execute k Union() and Find() operations in some
unknown order

» our current implementation only require O(k log (n)) time
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Union Find

Even Better Implementation

If we apply another technique called “uion by rank”, we can reduce
the running time to “almost linear”.

vV v . v. v Y

need an extra array

each node will now have a rank, starting at 1

rank([x] simply equals to the depth of the tree rooted at x
remember that in Union() we have a choice of how to merge

now with the rank, we can pick the shallower tree and point it
to the deeper one.

» this prevents any tree from becoming deeper than log(n)

» so by itself, untion by rank also guarantee a running time of

Dustin Tseng
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Union Find
e

Even Better Implementation

Here would be an implementation of union-by-rank. As a bouns,
this returns true if there really is some merge, false if x and y are
already in the same set.

bool UNION( int x, int y ) {
int xx = FIND( x ), yy = FIND( y );
if( xx == yy ) return false;

// make sure rank[xx] is smaller
if ( rank[xx] > rank[yyl ) { int t = xx; xx = yy; yy = t; }

// if both are equal, the combined tree becomes 1 deeper
if ( rank[xx] == rank[yy] ) rank[yyl++;

uf [xx] = yy;
return true;
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Union Find
e

Even Better Implementation

» Combining the two we will achieve O((k + n)log *(n))
> logx(n) is defined as
e logx(x)=0if x <1,
e log#(x) =1+ log * (log(x)) o/w
» for a value of n less than 2%%, log *(x) will be less than 5.

» you can find a proof in chapter 21 in the textbook.
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Minimum Spanning Tree

Introduction

» a tree is an undirected, connected, acyclic graph.

» there is exactly one path between every pair of vertices in a
tree

> a spanning tree of a given graph G=(V,E), is a tree T=(V,
E') where E' is a subset of E.

» a minimum spanning tree is the spanning tree with the
minimum cost
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Minimum Spanning Tree

Kruskal’s Algorithm

We will now introduce Kruskal's algorithm.
» this is a greedy algorithm
» starting with no edge in the spanning tree
take the shortest edge and add it to the tree
now take the rest of the edge in order of incresing length

add them only if tree properties are preserved

vV v v Yy

repeat until all vertices are connected
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Minimum Spanning Tree

Kruskal's Algorithm

int uf[128];

struct Edge { // a structure to represent an edge
int u, v, w; // the two endpoints and the weight
bool operator<( const Edge &e ) const { return w < e.w; }

// a comparator that sorts by least weight

};
Edge edges[100000] ; // the graph represented as a list of edges
int n, m; // the number of vertices and the number of edges

int kruskal() {

sort( edges, edges + m );
for( int i = 0; i < n; i++ ) uf[i] = i;

int trees=n, sum=0; // the number of trees (parties), and the total weight

for( int i = 0; i < m && trees > 1; i++ ) {
if ( UNION( edges[i].u, edges[il.v ) ) {
trees—-; // use edge i in the tree
sum += edges[il.w;
}
¥

return sum;
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Minimum Spanning Tree

Union Find for MST

How is union find used here?
» first we sort the edge by increasing weight

» we do not need adjacenty list or matrix, a list of edges will be
enough

» elements in union find are the vertices
» initially every vertex are independent

» when we examine a new edge, we check weather the
endpoints are already in the same set

» if they are not then it is safe to use this edge

So why is this algorithm correct? What about its complexity?
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Minimum Spanning Tree

What Else?

» References:

e Frank and Igor's CS490 notes.
e Cormen, Thomas H., et al. Introduction to Algorithms.

» homework help

» you will begin to present topics starting next week!
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