
CS490: Problem Solving in Computer Science

Lecture 7: Introductory Graph Theory II

Dustin Tseng
Mike Li

Wednesday January 16, 2006

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 1

Outline

� Review of DFS/BFS

� Euler Cycles

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 2

Euler Cycles

� Review of DFS/BFS

� Euler Cycles

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 3

Euler Cycles

Introduction

Recall that

I an Euler cycle is a closed walk that visits each edge exactly
once.

I we mentioned that there is a linear algorithm for finding an
Euler cycle if it exists

Definition:

I the degree of a vertex is the number of edge coming into the
vertex

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 4

Euler Cycles

Corrections

Let’s first correct some of the statements I(Mike) made last time:
Definition:

I a path is a walk that does not pass any edge more than once.

I a simple path is a walk that does not pass any vertex more
than once

Eulerian Path:

I when a graph has 2 vertices with odd degree, we have to start
at one and end at the other

I this is a Eulerian path, not Euler cycle

The correct statement should be:

I a connected graph, G, has an Euler path if there are exactly
two vertices with odd degree.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 5

Euler Cycles

Euler Cycle

Claim:

I a connected graph, G, has an Euler cycle if the degree of each
vertex is even.

I this should be somewhat intuitive, because if there is a vertex
with odd degree, then we cannot return to this vertex.

I next let us explore how we can find an Euler cycle in a given
graph

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 6

Euler Cycles

Cycle Detector

First let us start with a function that finds any cycle:

void greedyCycle(int u) {

while(true) {

int v;

for(v = 0; v < n; v++)

if(graph[u][v]) break;

if(v < n) {

graph[u][v] = graph[v][u] = false;

// add the edge (u,v) to the cycle

u = v;

}

else break;

}

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 7

Euler Cycles

Cycle Detector

The idea is quite simple here

I find an edge and add it to the cycle

I moreover erase this edge in the graph

I it should be clear now that if u has a odd degree, then we can
always find a edge that leaves u and never be able to come
back

I on the other hand if all vertices have even degree, by taking
out (u,v), we now have exactly 2 odd vertices.

I and we will always have 2 odd vertices until we get back to u

I since there are finite number of edges, we know either we run
out of edges (problem solved) or we get back to u prematurely

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 8

Euler Cycles

Euler Cycle

So how can we use our greedyCycle() to find us an Euler Cycle?

I notice that, if we reached back to u early, there will be a
subgraph whose vertices’ degree will all be even.

I this is because we subtracted a cycle away from the original
graph

I in this subgraph, we can repeat our greedyCycle(), such that
it gives us a new cycle, from v to v, and so on...

I we can actually insert these new cycles and form a complete
Euler cycle

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 9

Euler Cycles

Euler Cycle

To do all that we can construct a recursive function:

list< int > cyc;

void euler(list< int >::iterator i, int u) {

for(int v = 0; v < n; v++) if(graph[u][v]) {

graph[u][v] = graph[v][u] = false;

euler(cyc.insert(i, u), v);

}

}

int main() {

// read graph into graph[][] and set n to the number of vertices

euler(cyc.begin(), 0);

// cyc contains an euler cycle starting at 0

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 10

Euler Cycles

Euler Cycle

Couple things to notice here

I we are using a list to keep track of where to insert the next
vertex

I two things can happen here:

I the function takes us back to the initial vertex u

I the function calls itself at v, and constructs a cycle to be
inserted at v

I the complexity of this implementation is O(mn)

I this can be reduced to O(m) if we were to use adjacency list
plus some iterator manipulations

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 11

Euler Cycles

What Else?

I References:

• Frank and Igor’s CS490 notes.
• Cormen, Thomas H., et al. Introduction to Algorithms.

I Good Luck!

I Seminar Schedule Change

I Tentative Midterm times

I Guest Speakers

I Problem Sets are really up!

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 7: Introductory Graph Theory II 12

	Outline
	Review of DFS/BFS
	Euler Cycles

