
CS490: Problem Solving in Computer Science

Lecture 6: Introductory Graph Theory

Dustin Tseng
Mike Li

Wednesday January 16, 2006

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 1

Outline

� Introduction

� Depth First Search

� Breadth First Search

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 2

Introduction

� Introduction

� Depth First Search

� Breadth First Search

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 3

Introduction

Definitions

I A graph, G, is a pair of sets (V, E)

I V is a finite set of vertices

I E is subset of |V | × |V | edges

I each edge is a pair of vertices

I undirected graphs: edges are unordered pairs

I directed graphs: edges are ordered pairs

I weighted graphs: each edge has an associated weight

I some graphs have self-edges, no graph can have duplicate
edges

I the number of vertices is usually denoted by n = |V |
I the number of edges is usually denoted by m = |E |
I 0 ≤ m ≤ n2 if we allow self-edges and 0 ≤ m ≤ n(n − 1) if we

don’t

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 4

Introduction

Definitions

I a walk in a graph is a finite sequence of vertices (v1, v2, ..., vk),
such that for all i between 1 and k − 1, (vi , vi+1) ∈ E

I a path is a walk that never visits the same vertex twice.

I unweighted graph: the length of a path is the number of
edges in it

I weighted graph: the length of a path is the sum of edge
weights

I a cycle is a walk from a vertex back to itself

I an Euler cycle is a cycle that visits each edge exactly once

I a Hamiltonian cycle is a cycle that visits each vertex exactly
once

I finding an Euler cycle in a graph can be done in O(n) time

I finding a Hamiltonian cycle is NP-hard

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 5

Introduction

Definitions

I a graph is called connected if there is a path between any pair
of vertices

I a subgraph of G = (V,E) is a graph G’ = (V’,E’) where
V ′ ⊂ V and E ′ ⊂ E

I a connected component of G is a maximal connected
subgraph of G

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 6

Introduction

Data-structures

There are several data-structures suited for representing graphis

I an adjacency matrix M is an n×n matrix of 0s and 1s

I M[i][j] is 1 iff the edge (i,j) ∈ E.

I an adjacenty list L is a set of lists, one for each vertex

I L[i] is a list of all vertices such that j is in the list iff (i,j) ∈ E

I a typical way of creating an adjacency list in C++ is to make
a vector< vector< int > > L

I finally an edge list is a list (or a set) of edges

I the memory complexity for the three structures are O(n2),
O(m + n) and O(m), respectively

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 7

Depth First Search

� Introduction

� Depth First Search

� Breadth First Search

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 8

Depth First Search

Introduction

I One of the most basic problems on graphs is the Graph
Reachability problem: given a graph G and a vertex v in G,
which other vertices can be reached by a path starting from v?

I One of the simplest algorithms for this problem is DFS

I start by visiting v, mark it as “reachable” and then visit all of
v’s neighbours recursively.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 9

Depth First Search

Implementation

Using a adjacency matrix, we can implement the DFS very easily
as follows:

bool M[128][128]; // adjacency matrix (can have at most 128 vertices)

bool seen[128]; // which vertices have been visited by dfs()

int n; // number of vertices

void dfs(int u) {

seen[u] = true;

for(int v = 0; v < n; v++) if(!seen[v] && M[u][v]) dfs(v);

}

I to use dfs(), first initialize M to contain the adjacency matrix
of a graph.

I then initialize all entreis of seen[] to false

I finally call dfs(u) on some vertex u

I after dfs(u) returns, seen[v] will be true for exactly those
vertices v that can be reached by a path from u

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 10

Depth First Search

More DFS

I DFS induces what is called a DFS tree to the graph - a rooted
tree of recurive calls to dfs()

I one possible use of our simple implementation is flood fill - an
algorithm that many paint programs use to implement the
paint bucket tool

I for more complicated algorithms that rely on DFS, we often
need what is called the White-Gray-Black DFS.

I start by considering each vertex as being white.

I color a vertex gray when we first reach it

I color a vertex black when dfs() returns

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 11

Depth First Search

White-Gray-Black DFS

bool M[128][128]; // adjacency matrix

int colour[128]; // 0 is white, 1 is gray and 2 is black

int dfsNum[128], num; // array of DFS numbers, and the current DFS number

int n; // the number of vertices

// p is u’s parent in the DFS tree

void dfs(int u, int p) {

colour[u] = 1;

dfsNum[u] = num++;

for(int v = 0; v < n; v++) if(M[u][v] && v != p) {

if(colour[v] == 0) {

// (u,v) is a forward edge

dfs(v, u);

}

else if(colour[v] == 1) {

// (u,v) is a back edge

}

else {

// (u,v) is a cross edge

}

}

colour[u] = 2;

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 12

Depth First Search

White-Gray-Black DFS

There are several things going on here

I the seen[] array has been replaced by the color[]rray

I dfs() now has a extra parameter to indicate the parent of the
vertex in the DFS tree

I white vertices are those not yet visited

I any vertex u is gray while dfs(u) is being executed

I black vertices are those already explored - all their children in
the DFS tree as well as themselves are visited

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 13

Depth First Search

White-Gray-Black DFS

The vertex coloring also gives us three types of edges:

I gray-to-white edges: edges of the DFS tree

I gray-to-gray edges: edges up the DFS tree

I gray-to-black edges: edge from one DFS tree branch to
another, cross edge

I in undirected graphs, cross edges never happen (exercise)

Finally

I dfsNum[] assigns each vertex a DFS number

I the DFS number is from 0 to n-1, indecating the order in
which the dfs() visited the vertices

I the variable num keeps track of the current DFS number and
gets incremented each time a new vertex is visited

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 14

Depth First Search

DFS for Bridge Detection

One example where White-Gray-Black DFS does a great job is the
Bridge Detection problem.

I In a connected graph, G, a bridge is any edge that, if
removed, would make the graph disconnected.

I For example, if G represents a network of telephone cables
between cities, a bridge would be any cable between a pair of
cities that is ”important” in the sense that a malfunction in
that cable would cause some pair of cities to be disconnected.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 15

Depth First Search

DFS for Bridge Detection

How can we use DFS here?

I first since we are dealing with an undirected graph, there is no
cross-edges

I then observe that, if some vertex u has a back edge pointing
to it, then nothing below u in the DFS tree can be a bridge.

I the reason is that each back edge gives us a cycle, no edge
that is a member of a cycle can be a bridge.

I so conversely, if there is a vertex v whose parent in the DFS
tree is u, and no ancestor of v has a back edge pointing to it,
then (u, v)

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 16

Depth First Search

DFS for Bridge Detection

bool M[128][128]; // adjacency matrix

int colour[128]; // 0 is white, 1 is gray and 2 is black

int dfsNum[128], num; // DFS numbers

int n; // the number of vertices

// returns the smallest DFS number that has a back edge pointing to it

// in the DFS subtree rooted at u

int dfs(int u, int p) {

colour[u] = 1;

dfsNum[u] = num++;

int leastAncestor = num;

for(int v = 0; v < n; v++) if(M[u][v] && v != p) {

if(colour[v] == 0) {

// (u,v) is a forward edge

int rec = dfs(v, u);

if(rec > dfsNum[u])

cout << "Bridge: " << u << " " << v << endl;

leastAncestor = min(leastAncestor, rec);

}

else {

// (u,v) is a back edge

leastAncestor = min(leastAncestor, dfsNum[v]);

}

}

colour[u] = 2;

return leastAncestor;

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 17

Depth First Search

DFS for Bridge Detection

Once again there are several changes to note here

I dfs(u) now returns an int, the smallest DFS number reachable
via a back edge from some vertex in the DFS subtree of u

I this DFS number is stored in the variable leastAncestor, which
is updated in two places

I first when we find a back edge

I second when we call dfs() recursively on a subtree

I the new if statement says, if a recursive call to dfs(v,u)
returns a larger number than the DFS number of u, then we
have found the bridge (u,v)

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 18

Breadth First Search

� Introduction

� Depth First Search

� Breadth First Search

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 19

Breadth First Search

Introduction

I in DFS, we explore a vertex’s neighbours recursively, meaning
that we reach as deep as possible first then go back and visit
other neighbours.

I another useful search algorithm is the Breadth-First Search
(BFS).

I in BFS, we start with one vertex in a visited set, the source
vertex

I then, at each step, we visit the entire layer of unvisited
vertices reachable by some vertex in the visited set, and add
them to the visited set

I therefore BFS visits vertices in order of their breadth, or the
distance from that vertex to the source

I BFS is an iterative algorithm, it also builds a tree.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 20

Breadth First Search

BFS for Flood Fill
A simple problem that BFS is good at is the flood-fill problem
mentioned previously.

bool M[128][128]; // adjacency matrix (can have at most 128 vertices)

bool seen[128]; // which vertices have been visited

int n; // number of vertices

// ... Initialize M to be the adjacency matrix

queue<int> q; // The BFS queue to represent the visited set

int s = 0; // the source vertex

// BFS floodfill

for(int v = 0; v < n; v++) seen[v] = false; // set all vertices to be "unvisited"

seen[s] = true;

DoColouring(s, some_color);

q.push(s);

while (!q.empty()) {

int u = q.front(); // get first untouched vertex

q.pop();

for(int v = 0; v < n; v++) if(!seen[v] && M[u][v]) {

seen[v] = true;

DoColouring(v, some_color);

q.push(v);

}

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 21

Breadth First Search

BFS for Flood Fill

In this example

I we use a queue to represent the visited set because a queue
will keep the vertices in order of when they were first visited

I the queue will keep the vertices in a breadth-first manner

I we start by marking the source vertex as seen, coloring it and
pushing it onto the queue

I next we do the same for all its neighbours, mark, color and
the push

I since BFS is iterative, we need not to write it as a function

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 22

Breadth First Search

BFS for Shortest Path
BFS has a special property that we can exploit. In BFS, the
vertices closes (least number edges) to the source vertex is seen
first. Hence, we can use BFS to compute the shortest distance
between a source certex and any other vertex in an unweighted
graph.

bool M[128][128]; // adjacency matrix (can have at most 128 vertices)

int colour[128]; // 0 is white, 1 is gray and 2 is black

int d[128]; // d[v] is the distance from source to v

int pi[128]; // pi[v] is the parent of v in the shortest path from source to v

int n; // number of vertices

// ... Initialize M to be the adjacency matrix

queue<int> q; // The BFS queue to represent the visited set

int s = 0; // the source vertex

// BFS shortestpath

const int Inf = INT_MAX; // Infinity!!

for(int v = 0; v < n; v++) {

colour[v] = 0; // set all vertices to be "unvisited"

d[v] = Inf; // distance is Infinity initially, meaning "cannot be reached"

pi[v] = -1; // -1 is not a vertex, meaning "no parent so far"

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 23

Breadth First Search

BFS for Shortest Path

// Initializing properties of the source vertex

colour[s] = 1;

d[s] = 0; // distance from s to itself is 0

pi[s] = -1; // no parent for source vertex

q.push(s);

while (!q.empty()) {

int u = q.front(); // get first untouched vertex

q.pop();

for(int v = 0; v < n; v++) {

if(colour[v] == 0 && M[u][v]) { // (u,v) is edge, v is white

colour[v] = 1;

d[v] = d[u] + 1; // one more edge used, increment distance by 1

pi[v] = u; // using edge (u,v), so parent of v is u

q.push(v);

}

}

colour[u] = 2;

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 24

Breadth First Search

BFS for Shortest Path

I Note now BFS also has a White-Gray-Black colour[] array
instead of seen[]

I The properties of these colours remain the same, but the BFS
tree is different from the DFS tree on the same graph.

I the d[] array is added to keep track of distance from the
source vertex, which is updated whenever we use an edge

I the pi[] array tells us what the parent of a vertex is in the
shortest path that we have found using BFS

I after this BFS implementation, a value of d[v] = inf
indicates that v was never visited. Hence BFS also solves the
reachability problem.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 25

Breadth First Search

BFS vs DFS

So, when is DFS better and when is BFS better?

I the answer depends on the type of the problem we want to
solve

I BFS visits each layer one at a time, good when

• if we know the solution is at a low depth
• if we need to look at every vertex anyway (e.g. flood fill)

I DFS visits neighbours recursively

I we can actually choose which neighour to visit first

I there are heuristics we can follow to make our decision and
improve the average performance

What about space and time complexity?

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 26

Breadth First Search

What Else?

I References:

• Frank and Igor’s CS490 notes.
• Cormen, Thomas H., et al. Introduction to Algorithms.

I server problems

I midterm 1 on Monday, Feb. 6

I seminar schedule is updated

I Good Luck!

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 6: Introductory Graph Theory 27

	Outline
	Introduction
	Depth First Search
	Breadth First Search

