
CS490: Problem Solving in Computer Science

Lecture 4: C++ Standard Template Library

Dustin Tseng
Mike Li

Wednesday January 4, 2006

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 1

Outline

� C++ Templates

� STL Data Structures

� STL Algorithms

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 2

C++ Templates

� C++ Templates

� STL Data Structures

� STL Algorithms

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 3

C++ Templates

Introduction

I We use template to allow C++ functions to have type
parameters.

I In Java 1.5, there is generics, which is similar to this concept.

I Our focus will be on how to use the C++ STL.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 4

C++ Templates

Example

The following min function is only defined for int:

int min(int a, int b) {

return a < b ? a : b;

}

but we can make it general for any type by using template:

template<class C>

int min(C a, C b) {

return a < b ? a : b;

}

What will happen?

min("Xander", "Willow");

min(15, "Giles");

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 5

STL Data Structures

� C++ Templates

� STL Data Structures

� STL Algorithms

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 6

STL Data Structures

Overview

The STL provides a large number of data structures. Here are
some of the most commonly used ones:

vector : contain contiguous elements stored as an array

queue : FIFO data structure

stack : FILO data structure

list : sequences of elements stored in a linked list

set : sorted set of unique objects

map : sorted associative containers that contain unique key/value
pairs

Reference: http://www.cppreference.com/

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 7

http://www.cppreference.com/

STL Data Structures

Vectors
Vectors work much like a normal array.

I To create an array of intergers with maximum capacity n:
vector<int> V(n);

I to access an element:
V.at(i) or V[i]

I to append an element:
V.puch_back(c);

I to insert an element:
V.insert(loc, c);

I to acess the number of elements:
V.size();

I what does V.max_size() return?

I what would happen when we push_back when V has already
reached its max_size?

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 8

STL Data Structures

Iterators

When inserting an element into a vector, we used
V.insert(loc, c), here loc is a vector<int>::iterator
Iterators are used to access members of the container classes. We
can view them as pointers. e.g. to print the members of a vector:

vector<int>::iterator it;

for(it = V.begin(); it != V.end(); it++)

cout << *it;

To print the members in the reverse order, we have to use reverse
iterators:

vector<int>::reverse_iterator it;

for(it = V.rbegin(); it != V.rend(); it++)

cout << *it;

A GNU g++ trick: we can use typeof to simplify the declaration
of interators. e.g. we could use

for(typeof(V.rbegin()) it = V.rbegin(); it != V.rend(); it++)

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 9

STL Data Structures

Queues, Stacks and Deques

I Queues: First-In-First-Out

I Stacks: First-In-Last-Out

I Deques: Double-Ended Queues

#include <stack>

#include <queue>

// either one will provide deque

queue< int > Q; // Construct an empty queue

for (int i = 0; i < 3; i++)

Q.push(i); // Pushes i to the end of the queue

// Q is now { 0, 1, 2 }

int sz = Q.size(); // Size of queue is 3

while(!Q.empty()) { // Print until Q is empty

int element = Q.front(); // Retrieve the front of the queue, top() for stack

Q.pop(); // REMEMBER to remove the element!

cout << element << endl; // Prints queue line by line

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 10

STL Data Structures

Lists

Lists in STL are doubly-linked lists. Some list operations are
similar to deque:

I front(), back()

I pop_front(), pop_back()

I push_front(), push_back()

List does not have at(), but it supports the following:

I sort() : order a list

I splice() : join two lists

I merge() : join and order two lists

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 11

STL Data Structures

Sets

STL sets is a sorted collection of elements stored as a balanced
binary search tree. In order to use set<C>, the < operator must be
defined for C. e.g. < operator is defined in string

set< string > ss;

ss.insert("Sheridan");

ss.insert("Delenn");

ss.insert("Lennier");

for(set< string >::iterator j = ss.begin(); j != ss.end(); ++j)

cout << " " << *j;

What is the complexity of insert()?
What will be the output?

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 12

STL Data Structures

More Sets

An easy way to implement tree sort:

vector< int > v = {... };

set< int > s(v.begin(), v.end());

vector< int > w(s.begin(), s.end());

What is the complexity?

We use count() to check whether an element exists, and use
erase() to erase elements. A range of element can be erased by
passing in two iterators.

set< int > s;

for(int i = 1900; i <= 3000; i += 4) s.insert(i);

for(int i = 1900; i <= 3000; i += 100) if(i % 400 != 0) {

if(s.count(i) == 1) s.erase(i);

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 13

STL Data Structures

Maps

Like STL sets, STL maps also store elements in a sorted fashion.
However, the elements in a map are key-value pairs. We may view
a map as a dictionary, where the paired elements are sorted by the
keys. Since map is implemented using balanced binary search
trees, insertion, deletion and update operations require logarithmic
time in the size of the map.

e.g. mapping days of a week

vector< string > i2s(7);

i2s[0] = "Sunday"; i2s[1] = "Monday"; i2s[2] = "Tuesday"; i2s[3] = "Wednesday";

i2s[4] = "Thursday"; i2s[5] = "Friday"; i2s[6] = "Saturday";

map< string, int > s2i;

for(int i = 0; i < 7; i++) s2i[i2s[i]] = i;

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 14

STL Data Structures

More Maps

e.g. word frequency

string word;

map< string, int > freq;

while(cin >> word) freq[word]++;

to print the key-value pairs in a map:

for(map< string, int >::iterator i = freq.begin(); i != freq.end(); ++i)

cout << (*i).first << ": " << (*i).second << endl;

first() and second() are pair operations. This is because STL
map actually uses a sub data structure pair. Even when we just
want to use pairs, we have to #include<map>.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 15

STL Data Structures

Maps Again

We should always use count(key) to check whether a given key
exists in a map. This is because the fact that if we call:

map<string, int> freq;

cout << freq.size() << endl;

if(freq["something"] > 0)

cout << "hah!" << endl;

cout << freq.size() << endl;

although we won’t be laughed at, since freq[”something”] will
indeed be 0, we have created a possiblly unwanted element in the
map, by merely calling it.

The output from the code above would be:

0

1

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 16

STL Data Structures

Comparators

Sometimes we may want to modify the way we compare things
when we store them in a map or a set. For example, by default,
the < operatior on strings performs lexicographic comparison. If we
want to sort strings first by length, here is what we can do:

struct myLessThan {

bool operator()(const string &s, const string &t) const {

if(s.size() != t.size()) return s.size() < t.size();

return s < t;

}

};

int main() {

set< string, myLessThan > coll;

coll.insert("cat");

coll.insert("copper");

coll.insert("cow");

coll.insert("catch");

for(set< string, myLessThan >::iterator i = coll.begin(); i != coll.end(); ++i)

cout << " " << *i;

return 0;

}

What will the output be?

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 17

STL Algorithms

� C++ Templates

� STL Data Structures

� STL Algorithms

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 18

STL Algorithms

Sorting

The algorithm library in C++ provides serveral common and useful
algorithms. To use them, have #include <algorithm>

Sorting is a very common task, and can be done very easily with
the help of sort(). To use sort(), we pass in two iterators that
define the range of the operation.

vector<int> v;

v.push_back(3);

v.push_back(1);

v.push_back(2);

sort(v.begin(), v.end()); // sort v in increasing order

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 19

STL Algorithms

Customized Sort

We may customize sort() by once again, defining our own
comparator:

struct object {

int weight, cost;

};

struct ComparisonFunctor {

bool operator() (const object &a, const object &b) const {

if (a.cost != b.cost) return a.cost < b.cost;

else return a.weight > b.weight;

}

};

vector<object> vo;

// ... insert some objects to the vector

// A. sort the vector first by lowest cost, then by greatest weight

sort(vo.begin(), vo.end(), ComparisonFunctor());

// B. we can also define a set using the functor.

// the following copies the vector to the set, which will be kept in

// sorted order (Binary Search Tree)

set< object, ComparisonFunctor > myset(vo.begin(), vo.end());

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 20

STL Algorithms

Customized Sort

Although a function object, or functor, gives us the advantage of
re-using it in sets or maps, often we may find it easier just to use a
function directly:

bool compare(const object &a, const object &b) {

if (a.cost != b.cost) return a.cost < b.cost;

else return a.weight > b.weight;

}

and to use it:

sort(vo.begin(), vo.end(), compare);

Notice how this time there is no brackets.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 21

STL Algorithms

Permutation

I next_perputation is another very useful function comes
with algorithm. We often need it in brute force methods.
Once again, this function takes in two iterators and operates
on a range of values.

I For a finite set S = 1, 2, ..., n, the permutation would be n!. If
we allow duplicates, then the formula becomes n!

c1!c2!...cm! ,
where ci represents the number of duplicates for ith element.

I e.g. For a set of 3 elements, there are 3! = 6 different
permutations: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and
(3,2,1).

I e.g. There are 10 permutations of (1,1,2,2,2). They are
(1,1,2,2,2), (1,2,1,2,2), (1,2,2,1,2), (1,2,2,2,1), (2,1,1,2,2),
(2,1,2,1,2), (2,1,2,2,1), (2,2,1,1,2), (2,2,1,2,1) and (2,2,2,1,1).

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 22

STL Algorithms

Permutation

I First notice that there is always a way to sort the
permutations lexicographically.

I next_perputation actually takes a range of elements and
change it to the lexicographically next permutation.

I What will happen if we start with an arrangement that is
already the lexicographically largest permutation?

I To ensure we go though all permutations, we usually first sort
the range, and combo next_permutation() with a
do-while loop.

vector< int > v;

// ...fill in v with some integers

sort(v.begin(), v.end());

do {

for(int i = 0; i < (int)v.size(); i++) cout << " " << v[i];

cout << endl;

} while(next_permutation(v.begin(), v.end()));

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 23

STL Algorithms

What Else?

Someone demonstrates Halloween Again!

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 4: C++ Standard Template Library 24

	Outline
	C++ Templates
	STL Data Structures
	STL Algorithms

