
CS490: Problem Solving in Computer Science

Lecture 3: Input/Output

Dustin Tseng
Mike Li

Wednesday January 4, 2006

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 1

Outline

� Input in Java

� Output in Java

� I/O in C++

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 2

Input in Java

� Input in Java

� Output in Java

� I/O in C++

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 3

Input in Java

Before Java 1.5

Before java 1.5, usually we read input line by line and the rest is
string processing.

// To read from standard in:

BufferedReader cin = new BufferedReader(new InputStreamReader(System.in));

// To read from file:

BufferedReader fin = new BufferedReader(new FileReader("myfile"));

// To read from string:

BufferedReader sin = new BufferedReader(new StringReader("read this string"));

After reading in the lines, we parse it. We will use standard input
for example.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 4

Input in Java

Before Java 1.5

String line;

while((line = cin.readLine()) != null) { // this checks if there are more input

// to get rid of leading or trailing whitespaces

// quite useful, in case some extra space was in the file by accident

line = line.trim();

// suppose we have an integer

int myInt0 = Integer.parseInt(line);

// suppose we have a binary integer

int myInt1 = Integer.parseInt(line, 2);

// suppose we have a double, and so on....

double myDbl = Double.parseDouble(line);

// suppose we have a whole bunch of space delimited integers

// e.g. "1 4 2 3 5"

String[] toks = line.split(" +"); // " +" is a regular expression

int[] myInts = new int[toks.length];

for(int i = 0; i < toks.length; i++)

myInts[i] = Integer.parseInt(toks[i]);

// read up the API of split to see its behavior and options

// when there are trailing, leading, multiple delimiters

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 5

Input in Java

With Java 1.5

Now, with Java 1.5, we use Scanner. Scanner automatically
deals with whitespaces (similar to cin in C++)

Scanner in;

// here is scanner from standard in, string, and file

in = new Scanner(System.in);

in = new Scanner("scan this string");

in = new Scanner(new File("myFile"));

// you can change the deliminters to something other than

// whitespace by passing in a second argument

// e.g. read a bunch of ints

while(in.hasNextInt()) {

int garbage = in.nextInt();

}

// similarily, there is nextDouble(), nextBigInteger(), etc.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 6

Input in Java

With Java 1.5

Sometimes we still need to do line by line processing.
e.g. when you want to sum up (space delimited) integers in a line,
but you don’t know how many integers are in the line

String lineOfInt = in.nextLine();

String[] moreToks = lineOfInt.trim().split(" +");

int sum = 0;

for(String s : moreToks) sum += Integer.parseInt(s);

For even more nasty things, check out details of split, as well as
the String API

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 7

Input in Java

With Java 1.5

Warning: Take extreme care when switching between nextInt()
and nextLine(). e.g. If input is:

1

1 2 3 4 5

After readInt()

1

^

1 2 3 4 5

The next readLine() gives an empty line, and moves the caret to
next line

1

1 2 3 4 5

^

Now, the second readLine() will give you the meaningful stuff.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 8

Output in Java

� Input in Java

� Output in Java

� I/O in C++

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 9

Output in Java

Java Output

Java output is pretty straight forward. e.g. if we want to print the
following:

int a = 1;

char b = ’Z’;

String c = "ho ho ho!";

We write:

System.out.println("" + a + b + c);

\\ or you can do it one by one

System.out.print(a);

System.out.print(b);

System.out.println(c);

To print to a file use:

PrintWriter fout = new PrintWriter(new File("outputFile"));

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 10

Output in Java

Example: Interger Array

Print the contents of a integer array seperated by spaces, in base 3

int[] myArray = new int[]{1, 4, 2, 3, 4, 2};

for(int i = 0; i < myArray.length; i++) {

if (i != 0) System.out.print(’ ’);

System.out.print(Integer.toString(myArray[i], 3));

}

System.out.println();

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 11

Output in Java

Example: Floating Points

Printing a floating point number is more work. Usually there is a
certain format (e.g. number of decimal places). Thanks to Java
1.5, we now have format (similar to C/C++ printf)
Suppose we want to print the following integers and doubles

int[] ints = new int[]{3, 2, 15};

double[] doubles = new double[]{2.2, 0.43, 25.267};

into:

3 2.20

2 0.43

15 25.27

do:

for(int i = 0; i < 3; i++) {

System.out.format("%2d %5.2f\n", ints[i], doubles[i]);

}

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 12

Output in Java

More Formatter

There’s a bunch of other options. e.g.
- means left justify
0 means leading zeros
%s is for strings

for(int i = 0; i < 3; i++) {

System.out.format("%02d %-5.2f\n", ints[i], doubles[i]);

}

gives:

03 2.20

02 0.43

15 25.27

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 13

Output in Java

Even More Formatter

Finally, in the spirit of variable arguments

String[][] words= new String[][]{

{"First", "Last", "Fav Food", "e-mail"},

{"Winnie", "Pooh", "Honey", "pooh@100acrewoods.net"}

};

for(String[] sa: words)

System.out.format("%4$-25s %1$-10s %2$-10s\n", sa);

gives:

e-mail First Last

pooh@100acrewoods.net Winnie Pooh

For a complete description, read Java API:
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 14

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

I/O in C++

� Input in Java

� Output in Java

� I/O in C++

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 15

I/O in C++

Overview

I/O in C++ generally involves the following standard libraries that
deals with stream class:

I iostream: Standard I/O

I fstream: File I/O

I sstream: Convert string to stream

I iomanip: I/O manipulation

I cstdio: I/O functions inheretied from C

To use these libraries, use #include. e.g.

#include <iostream>

\\ we also need to specify the namespace by:

using namespace std;

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 16

I/O in C++

iostream
To parse input from standard input stream, we simply use cin with
the extraction operator >>, which automatically loads all standard
types. e.g.

int n;

double f;

string s;

cin >> n >> f >> s;

This works similarly to Scanner in Java. Both of them discard
whitespaces (’\n’, ’\t’, ’ ’, etc) between inputs. So

7 3.14 pie

and

7

3.14 pie

will produce the same n, f, s.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 17

I/O in C++

iostream

Similarly, we have cout and << to deal with standard output. e.g.

cout << n << f << s;

would produce

73.14pie

To add space or end of line, we can write:

cout << n << " " << f << endl << s;

which would produce

7 3.14

pie

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 18

I/O in C++

fstream

File I/O is really simple in C++. First we need specify the input
and output stream. The rest would then be the same as standard
I/O. e.g.

ifstream fin("input.txt");

fin >> n >> f >> s;

ofstream fout("output.txt");

fout << "case " << n << ":\n" << s << "= " << f << endl;

This is what output.txt will look like:

case 7:

pi= 3.14

Checking I/O errors would increase robustness of the program, but
generally not a concern in problem solving.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 19

I/O in C++

sstream

Sometimes we would like to parse input by line rather than by
value. One case mentioned before was to add all numbers in a line.
To do this in C++, we can write:

string line;

int n=0;

while(getline(cin, line, ’\n’)) {

int sum=0, i;

stringstream strin(line);

while(strin >> i)

sum += i;

cout << "line " << ++n << ": " << sum << endl;

}

Note: similar to NextLine(), we also need to be careful with
trailing ’\n’ while using getline(). Usually we solve this
problem by calling getline() again on a dummy string variable.

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 20

I/O in C++

iomanip

Output stream can be easily manipulated by using iomanip:

\\ set base for integers (8, 10 or 16)

cout << setbase(16) << 100 << endl;

\\ hex, dec and oct are predefined, so equivalently:

cout << hex << 100 << endl;

\\ set precision for floats

cout << setprecision(1) << 3.14 << endl;

cout << setprecision(3) << 3.14 << endl;

\\ set whitespace

cout << setw(3) << 7 << endl;

\\ set fill characters

cout << setfill(’0’) << setw(3) << 7 << endl;

The output would be:

64

64

3.1

3.14

7

007

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 21

I/O in C++

cstdio
iomanip often does not offer enough formatting functionalities, we
usually turn to the more powerful printf from C.
Let’s use the same example used for Java and suppose we want to
print

int ints[3] = {3, 2, 15};

double doubles[3] = {2.2, 0.43, 25.267};

into:

3 2.20

2 0.43

15 25.27

In C++ we can write:

for(int i = 0; i < 3; i++) {

printf("%2d %5.2f\n", ints[i], doubles[i]);

}

For a good reference, visit:
http://www.cplusplus.com/ref/cstdio/printf.html

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 22

http://www.cplusplus.com/ref/cstdio/printf.html

I/O in C++

Two More

cctype :

I tolower(), toupper()

I Convert character cases

climits :

I INT_MAX, INT_MIN, UINT_MAX, ULONG_MAX

I Useful constants

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 23

I/O in C++

What Else?

I Content in terms of amount/speed

I More exciting stuff coming up

I Online judge

I Topic preference

I Order of the presentations

Dustin Tseng Mike Li: CS490: Problem Solving in Computer Science, Lecture 3: Input/Output 24

	Outline
	Input in Java
	Output in Java
	I/O in C++

