
Bipartite matching 
A bipartite (or bicolourable) graph is a graph G=(V,E) in which it is possible to split the set of vertices, V, into 
two non-empty sets – L and R – such that all of the edges in E have one endpoint in L and the other one in R. A 
matching in any graph is any subset, S, of the edges chosen in such a way that no two edges in S share an endpoint. 
A maximum matching is a matching of maximum size. The problem of finding a maximum matching in a given 
graph is NP-hard in general, but if the graph is bipartite, there is a neat polynomial time solution. First of all, why do 
we care about bipartite matching? Here is a classic problem. There are m job applicants and n job openings. Each 
applicant has a subset of the job openings she is interested in. Conversely, each job opening can only accept one 
applicant out of some subset of the applicants. In other words, there are certain allowed or "compatible" pairings of 
applicants to jobs. Find an assignment of jobs to applicants in such a way all the pairings are allowed and as many 
applicants as possible get jobs. 

We can model this with a bipartite graph – on the left side we have the applicants and on the right side we have the 
jobs. Draw an edge between applicant u and job v if they are compatible. The answer that we are looking for is the 
maximum matching. 

One way to solve the problem is to reduce it to an instance of Maximum Flow. Draw the bipartite graph with 
applicants on the left and jobs on the right. Give each edge a capacity of 1 – having a flow of 1 between applicant u 
and job v will correspond to matching applicant u to job v. Now we need to ensure that no applicant gets matched to 
more than 1 job. For that, add a vertex, s, on the far left and connect it to each applicant by an edge of capacity 1. 
We also want each job to only be filled by at most one applicant. To enforce that, add a vertex, t, on the far right and 
connect each job opening to t by an edge of capacity 1. Finally, find the maximum flow from s to t. The amount of 
flow we can push is exactly the number of original edges that will be used to connect an applicant to a job. 
Furthermore, no applicant or job vertex will be used more than once. To get the optimal matching, read it off from 
the resulting flow network. 

The implementation of this algorithm is straightforward once we have the code for MaxFlow. However, since each 
edge has capacity 1, we can simplify the code a lot. Here is an implementation that uses DFS to find augmenting 
paths in the Ford-Fulkerson algorithm and represents the graph and the flow network implicitly. 

Example 1: Maximum Bipartite Matching 

#include <string.h>

#define M 128
#define N 128

bool graph[M][N];
bool seen[N];
int matchL[M], matchR[N];
int n, m;

bool bpm( int u )
{
    for( int v = 0; v < n; v++ ) if( graph[u][v] )
    {
        if( seen[v] ) continue;
        seen[v] = true;

        if( matchR[v] < 0 || bpm( matchR[v] ) )



        {
            matchL[u] = v;
            matchR[v] = u;
            return true;
        }
    }
    return false;
}

int main()
{
    // Read input and populate graph[][]
    // Set m, n

    memset( matchL, -1, sizeof( matchL ) );
    memset( matchR, -1, sizeof( matchR ) );
    int cnt = 0;
    for( int i = 0; i < m; i++ )
    {
        memset( seen, 0, sizeof( seen ) );
        if( bpm( i ) ) cnt++;
    }

    // cnt contains the number of happy pigeons
    // matchL[i] contains the hole of pigeon i or -1 if pigeon i is unhappy
    // matchR[j] contains the pigeon in hole j or -1 if hole j is empty

    return 0;
}

Most of the work is done by the bpm(u) function that tries to match the left vertex u to something on the right side. It 
does that by trying all right vertices v and assigning u to v if either v is unassigned, or if v's match on the left side 
can  be  reassigned  to  some  other  vertex  on  the  right  that  is  larger  than  v.  If  you  try  running  this  algorithm on  an 
example,  you  will  see  that  this  is  simply  another  way  of  implementing  DFS.  Each  call  to  bpm(u)  finds  an 
augmenting path starting at u. The path is allowed to use left-to-right edges that are still unused, as well as right-to-
left  edges  that  are  used (by undoing a  unit  of  flow).  bpm(u)  returns  true  if a  path was found and false  otherwise. 
Each augmenting path adds one more edge to the matching,  and these are counted by the 'cnt'  variable in main(). 
The seen[] array is the usual DFS seen [] array. matchL[] and matchR[] store the matching; a -1 means "vertex is not 
matched (yet)". 

Can you determine the worst-case running time of this algorithm? (Typing the link below in the browser and reading 
it  there  would be cheating.)  Note  that  the  bipartite  matching problem is  symmetric.  We can flip  the  left  and right 
sides of the graph and assign jobs to applicants instead of applicants to jobs – it's the same thing. Using this fact, can 
you improve the worst-case running time? How could you do that with the fewest changes to the code? 

This  code,  with  a  lot  more  comments  can  be  found  here: 
http://www.shygypsy.com/tools/bpm.cpp 
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