
Maximum Flow
Imagine that you are a courier service, and you want to deliver some cargo from one city to another. You can deliver 
them using various flights from cities to cities, but each flight has a limited amount of space that you can use. An 
important question is, how much of our cargo can be shipped to the destination using the different flights available? 
To answer this  question,  we explore what  is  called a network flow graph, and show how we can model  different 
problems using such a graph. 

A  network  flow graph  G=(V,E)  is a  directed graph  with  two  special  vertices:  the  source  vertex  s,  and  the  sink 
(destination) vertex t. Each vertex represents a city where we can send or receive cargo. An edge (u,v) in the graph 
means  that  there  is a  flight  that  flies  directly  from u  to  v.  Each  edge  has  an  associated  capacity,  always  finite, 
representing the amount of space available on this flight. For simplicity, we assume there can only be one edge (u,v) 
for vertices u and v, but we do allow reverse edges (v,u). 

With this graph, we now want to know how much cargo we can ship from s to t. Since the cargo "flows" through the 
graph from s to t, we call this the maximum flow problem. A straightforward solution is to do the following: keep 
finding paths from s to t where we can send flow along, send as much flow as possible along each path, and update 
the flow graph afterwards to account for the used space. The following shows an arbitrary selection of a path on the 
above graph. 



In Figure 2, we picked a path s → u → v → t. The capacities along this path are 3, 3, 4 respectively, which means 
we have a bottleneck capacity of 3 – we can send at most 3 units of flow along this path. Now we send 3 units of 
flow along this path, and try to update the graph. How should we do this? An obvious choice would be to decrease 
the capacity of each edge used by 3 – we have used up 3 available spaces along each edge, so the capacity on each 
edge must decrease by 3. Updating this way, the only other path left from s to t is s → v → t. The edge (s,v) has 
capacity 2, and the edge (v,t) now has capacity 1, because of a flow of 3 from the last path. Hence, with the same 
update procedure, we obtain Figure 3 below. 

Our  algorithm now ends,  because  we  cannot  find  anymore  paths  from s  to t  (remember,  an  edge  that  has  no  free 
capacity cannot be used). However, can we do better? It turns out we can. If we only send 2 units of flow (u,v), and 
diverge the third unit to (u,t), then we open up a new space in both the edges (u,v) and (v,t). We can now send one 
more unit of flow on the path s → v → t, increasing our total flow to 5, which is obviously the maximum possible. 
The optimal solution is the following: 

So,  what  is  wrong with  our  algorithm? One  problem was  that  we  picked  the  paths  in  the  wrong order.  If  we  had 
picked the paths s → u → t first, then pick s → u → v → t, then finally s → v→ t, we will end up with the optimal 
solution.  One  solution  is  to  always  pick  the  right  ordering  or  paths;  but  this  can  be  difficult.  Can we  resolve  this 
problem without worrying about which paths we pick first and which ones we pick last? 



One solution is the following. Comparing Figure 3 and Figure 4, we see that the difference between the two are in 
the edges (s,v), (v,u) and (u,t). In the optimal solution in Figure 4, (s,v) has one more unit of flow, (u,v) has one less 
unit, and (u,t) has one more unit. If we just look at these three edges and form a path s → v → u → t, then we can 
interpret the path like this: we first try to send some flow along (s,v), and there are no more edges going away from 
v  that  has  free  capacity.  Now,  we  can  push  back flow  along  (u,v),  telling  others  that  some  units  of  flow  that 
originally came along (u,v) can now be taken over by flow coming into v along (s,v). After we push flow back to u, 
we can look for new paths, and the only edge we can use is (u,t). The three edges have a bottleneck capacity of 1, 
due  to  the  edge  (s,v),  and  so  we  push  one  unit  along  (s,v)  and  (u,t),  but  push  back  one  unit  on  (u,v).  Think  of 
pushing flow backwards as using a backward edge that has capacity equal to the flow on that edge. 

It turns out that this small fix yields a correct solution to the maximum flow problem. We state the algorithm 
formally here. We first associate a capacity function along each edge c(u,v), that tells us how many units of flow 
can go from u to v. Initially, c(u, v) is set to the maximum capacity for each edge (u, v). Now, we keep finding paths 
from s to t (we refer to these paths as augmenting paths).  When an augmenting path is found, we adjust the 
capacity for each edge in the path. The algorithm ends when no more paths are found. 

More specifically, each augmenting path we find will have an associated bottleneck capacity (the minimum along 
the path); we then send this much flow along the path, and update the graph. When updating the graph, we simply 
increase flow on forward edges, and decrease flow on backward edges. Here is our implementation. 

Example 1.Implementation of Maximum Flow

#include <iostream>
#include <algorithm>
using namespace std;
#define NV 4 // the number of vertices in our graph

int capacity[NV][NV]; // our flow graph
bool seen[NV]; // seen array for DFS

int findAugPath(int currentNode, int sinkNode, int flowAmt) {
// if we've reached the sinkNode, then we have found an augmenting path
if (currentNode == sinkNode) return flowAmt;
// mark current node as seen
seen[currentNode] = true;
for (int nextNode = 0; nextNode < NV; nextNode++) 

if (!seen[nextNode] && capacity[currentNode][nextNode]) {
// calculate how much flow we can use if we take this edge
int amt = min(flowAmt, capacity[currentNode][nextNode]);
// see if we can find an augmenting path that uses nextNode
// f will contain the amount of flow that this path can handle
// (f == 0 if no path exists)
int f = findAugPath(nextNode, sinkNode, amt);
// if we found a path, update the capacity network and return 
// the amount of flow in the augmenting path
if (f) {

capacity[currentNode][nextNode] -= f;
capacity[nextNode][currentNode] += f;
return f;

}



}

// no augmenting path was found, return 0
return 0;

}

int main() {
// initialize capacity[][] with  appropriate values
memset(capacity, 0, sizeof(capacity));
capacity[0][1] = 3;
capacity[0][2] = 2;
capacity[1][2] = 3;
capacity[1][3] = 2;
capacity[2][3] = 4;

// search for augmenting paths
int n = 0, flow = 0;
do {

flow += n;
memset(seen, false, sizeof(seen));
n = findAugPath(0, 3, INT_MAX);

} while (n);
cout << "Maximum flow: " << flow << endl;

return 0;
}

There are several things to note in the implementation above. We are using DFS to find augmenting paths in each 
step. The beauty of using DFS is that it makes it very easy to keep track of the bottleneck capacity – each time a new 
edge (u, v) is added to the path, the bottleneck capacity becomes the minimum of the current bottleneck capacity and 
the capacity of the edge (u, v).  As soon as an augmenting path with capacity C > 0 is found, we adjust our capacity 
matrix and return C.

This sums up our algorithm. This algorithm is frequently called the Ford-Fulkerson Algorithm after its discoverers. 
Now, how do we know that it works? We have to prove two things: 1) that the algorithm terminates after a finite 
number  of  computations,  and  2)  that  the  algorithm  outputs  the  maximum  flow  when  it  terminates.  The  proof  of 
correctness is difficult, and is proved with the much celebrated Max-flow Min-cut Theorem that can be found in the 
Big White book (Cormen et al.,  ¨Introduction to Algorithms¨) and covered in CS420, hence we will not discuss it 
here. However, we will prove that the algorithm always terminates. 

Proof of Termination of the Ford-Fulkerson Algorithm
When we find a path from s to t, we can only use forward edges and backward edges. Since we are finding a path, 
we never visit a  vertex twice.  Since each path goes from s to t,  we will  never find a backward edge from s,  or a 
backward edge to t – if they exist, then we have flow coming into s or flow coming out of t, both impossible when 
all our paths go from s to t. Therefore, each path will augment the flow of the graph by at least one unit, because 
both the first and last edge used in the path are forward edges. Since each capacity is finite, the algorithm can only 
find a finite number of augmenting paths, and thus must end in a finite number of iterations. 

Time complexity 

The  running  time  of  the  algorithm given above  is  On  
2  

F,  where F  is  the  maximum flow  in  the  graph.  This  is 



because there will be at most F augmenting paths, and finding an augmenting path via DFS takes On 
2
 time (re-

writing our DFS to use an adjacency list would change the time complexity to Omn*F , where m is the number of  
edges in the graph; this would be an advantage if the capacity graph were sparse). 

Edmonds and Karp proved that if we always find the shortest augmenting path, then we can achieve a better bound; 

specifically, if we change our DFS to BFS then we will achieve a running time of  Om 
2 

n
 

 .  Furthermore t here are 
better, more complicated algorithms that solve the maximum flow problem more efficiently.

Additional Applications of Maximum Flow 
Many problems in the real world or in mathematics can be solved using maximum flow. "Real" networks, like the 
Internet  or  electronic  circuit  boards,  are  good  examples  of  flow  networks (bandwidths  as  capacities).  Many 
transportation  problems  are  also  maximum  flow  problems.  In  the  next  section  we  will  discuss  one  common 
application of maximum flow – matching. 

Additional sample code can be found here: 
http://www.shygypsy.com/tools/
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