
CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

1111

Dynamic Programming II

CPSC490 Lecture 11.3

Friday 2006 March 17

David Freedman and Igor Ostrovsky

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

2222Agenda

• Non DP stuff:

– dUFLP/dHUNG Naming Conventions (xBase)

– Binary Arithmetic Review

• Today we’ll be looking at these DP topics...

– Memoization

– The Coin Changer Problem

– Hamiltonian Paths and Cycles

– The Travelling Salesman Problem

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

3333

dUFLP/dHUNG

Naming Conventions

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

4444dUFLP/dHUNG Variable Conventions

• Standard for “xBase” family of languages (dBase, Clipper, Paradox,

Fox Pro, etc.)

– dUFLP = dBase Users Functional Library Project, the dBase (later xBase

standards group)

– dHUNG = “Simplified Hungarian,” also known as “Short Hungarian” and

“Hungarian without the Arian”

• Hallmark feature: The first letter of each variable denotes it’s type.

• Key differences between dHUNG and Hungarian notation:

– type codes correspond to dBase standard type names

– only 1 letter is used for each type

– types don’t chain (an array of integers is just “a” not “an”)

• The original goal was that this would be a cross-language standard.

• bastardizations of the standard (less standard standards, like the one

you’re about to see), sometimes find their way into functional/OOP

languages.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

5555xBase Types Applied to C/C++/Java/JavaScript/Basic...

a array (any type/dimensions)
int atheArray[];

boolean[][] atheArray;

var atheArray = { false, 12, { 0, 0 }, "abc" };

b code block
/* no Basic, C/C++ or Java equivalent!

Arguably used in Java for Runnable */

var btheFunc = function() { return "OK"; }

c string (character field)
char[80] ctheString = "abc"; //pre C99!

string ctheString = "abc";

String ctheString = "abc";

char ctheChar = 'a';

d date
/*use only 1 of these within a single program!*/

Date dnow = new Date();

String dnow = "19991231";

long dnow = System.currentTimeMillis();

f floating point
float ftheFloat = 12.34; double ftheFloat = 12.34;

var famt = 12.34; Dim famt As Single

/*use only 1 of these within a single program!*/

Double ftheFloat = new Double(12.34);

Double FtheFloat = new Double(12.34);

l logical (boolean)
int ltheFlag = 0; //pre C99!

bool ltheFlag = false;

boolean ltheFlag = false;

Dim ltheFlag as Integer

n integer
byte nint = 123; int nint = 123; long nint = 123;

/*use only 1 of these within a single program!*/

Integer nint = new Integer(123);

Integer Nint = new Integer(123);

o object
Scanner oscanner = new Scanner(System.in);

v variant (where the type matters)
/* no C/C++ or Java equivalent! */

switch(vtheVar) { case "string": case "number":...

Dim vtheVar As Variant;

x variant (where the type is irrelevant)
/* no Java equivalent! */

#define IFF(lcond, xa, xb) ((lcond) ? (xa) : (xb))

Sub Iff(p_lcond As Integer, p_xa As Any, p_xb As Any)

y currency (integer cents)
long ybalance = 1234; //$12.34

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

6666Scope Prefix

Another prefix, separated by an underscore, denotes scope for all

non-local variables (variables declared inside a function or method)

m, g: private/public

• used for both object fields and “file level” variables (top level in an include/header file)
class TheClass { private int m_nvar; public int g_nvar = ...

var m_sVERSION = "1.2";

function TheClass() { this.m_nvar = 0; this.g_nvar = ...

p: parameter

• parameter passed to function.
public static void main(String[] p_aargs) { ...

function doSomething(p_nint, p_cstr) { ...

• in JavaScript, P_ is used for constructor parameters to avoid name conflicts with method

parameters.
function TheClass(P_nparam, P_cparam) {

this.p_nvar = P_nparam;

this.method = function(p_nparam, p_cparam) { ...

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

7777Scope Prefix (cont’d)

i, o: input/output parameters

• used instead of “p” for languages where

functions return values by changing

parameters (usually database languages like

ABAP or SQL).

• also used for recordset fields for stored

procedures which take table parameters

• i = input parameter, which will be read and

not be modified. Can pass a variable or a

literal.

• o = output parameter, which will not be read

but will be modified. Must pass a variable,

cannot pass a literal.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

8888Why would we ever want to do this?

• Makes it easier to understand code in

implicitly typed languages (esp. scripting

languages) like JavaScript or VBScript

• Simplifies translating code between

languages

• Simplifies collaboration on multilingual

projects (and reduces the amount of

documentation required!)

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

9999

Binary Arithmetic Review

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

10101010Positive Number Systems in Decimal

How are numbers in other systems decoded to decimal?

binary (base 2) hexadecimal (base 16) decimal (base 10)

non-decimal “digits”:
a = 10 d = 13

b = 11 e = 14

c = 12 f = 15
Notice:

binary 10 is decimal 2.

hexadecimal 10 is decimal 16.

Why is this important? (Look over at the decimal chart)

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

11111111Positive Number Systems in Binary

How are numbers in encoded in binary?

binary (base 010)decimal (base 01010)

non-binary digits:
2 = 010

3 = 011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 01000

9 = 01001

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

12121212Negative Binary Integers

• For signed integers (all integers in Java), the leftmost bit is called the

sign bit. It works exactly like all the other bits, except it is subtracted

instead of added. This system is called complement numbers.

• To change the sign of a number, flip every bit, then add 1 to the total

• The first “computer” which worked with complement numbers was

developed in 1640 by Blaise Pascal (1623-1662).

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

13131313Binary and Hexadecimal

• Binary numbers and hexadecimal numbers

have a special relationship: every 4 digits in

a binary number correspond to 1

hexadecimal digit, and vice versa.

8 ↔ 1000

9 ↔ 1001

a ↔ 1010

b ↔ 1011

c ↔ 1100

d ↔ 1101

e ↔ 1110

f ↔ 1111

0 ↔ 0000

1 ↔ 0001

2 ↔ 0010

3 ↔ 0011

4 ↔ 0100

5 ↔ 0101

6 ↔ 0110

7 ↔ 0111

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

14141414Bitwise Operators

• Java/C/C++ don’t have EQV/IMP operators, but you can get the same result by combining

the other operators

• Java/C/C++ also implement assignment versions of each of these operators

(~= , |= , &= , ^=). e.g. x ~= y is equivalent to x = x ~ y

• Common usage (almost every time you see these operators it means one of these):

– AND

• keep only these bits

• test if these bits are set

• remainder for division by a power of 2: x % 2y == x & (2y – 1)

– OR

• turn these bits on

– XOR

• “flip/toggle” these bits

• turn these known-on bits off (use x & ~y, or “keep everything except) to turn off bits with unknown states)

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

15151515Logical Operators (C/C++/JavaScript)
• C, which before the C99 standard did not have an explicit boolean

type, defines special “logical” operators which treat integers as entirely

zero or non-zero. This is also true of JavaScript (which I’ve always

thought was closer to C than it is to Java).

• These operators can be thought of in terms of the bitwise operators

(though in practice the below definitions are less efficient)

logical and x && y (x == 0 ? 0 : 1) & (y == 0 ? 0 : 1)

logical or x || y (x == 0 ? 0 : 1) | (y == 0 ? 0 : 1)

logical xor x ^^ y (x == 0 ? 0 : 1) ^ (y == 0 ? 0 : 1)

logical not ! y ~ (y == 0 ? 0 : 1)

• Unlike their bitwise counterparts, there are no assignment operators in

either Java or C for any of these operators.

– != does not have the same relation to ! as ~= does to ~

• Java also defines these operators, but they can only be used with two

boolean variables (likewise, in Java, the bitwise can only be used with

two integers)

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

16161616Binary Shifting

Left shift operator: <<

• right fills with 0

• x << y == x * 2y

Signed right shift operator: >>

• left fills by copying the leftmost bit

• x >> y == x / 2y for signed numbers

Unsigned right shift operator: >>>

• left fills with 0 (opposite of <<)

• x >>> y == x / 2y for unsigned numbers
(even in Java which doesn’t explicitly support unsigned numbers!)

Applies to C family languages only (C/C++/Java/JavaScript). Each of the below also has an assignment operator equivalent.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

17171717Shifting Common Usage

• 2n: 1 << n

• Multiply x * 2n: x << n

• Set bit n of x: x |= 1 << n

• Test bit n of x: x & (1 << n) == 0

• Get the n leftmost bits of x (also x % 2n):

x & ((1 << n) – 1)

• Binary decompression (get the n bits m bits from the left of x):

(x >> m) & ((1 << n) – 1)

e.g. if x == r * 23 + c where 0 < r,c ,< 23, then
c == x & ((1 << 3) – 1)

r == (x >> 3) & ((1 << 3) – 1)

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

18181818

finally... DP!

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

19191919Iterative DP

• All the examples we’ve looked at so far have been
iterative examples.

• Iterative algorithms are those where each step
builds forward from the previous step.

Example of an iterative algorithm:
//Get the p_ndigitth digit in the Fibonacci sequence in O(p_ndigit)

static int getFibonacciDigitIteratively(int p_ndigit) {

int[] aprev = { 1, 1 };

int nidx = 0;

for (int i = 2; i < p_ndigit; i++)

aprev[nidx ^= 1] = aprev[0] + aprev[1];

return aprev[nidx];

} //end method

Psst: we’re ignoring the non-DP, O(log(digit)) solution to this problem!

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

20202020Backwards DP

• Another way to build a DP function is to start
from the solution and work backwards, loading
subproblems on the fly.

• However, a side effect of working backwards
is that we very often end up resolving the same
subproblem multiple times.

/**Get digit p_ndigit in the Fibonacci sequence in O(1.65p_ndigit)*/

static int getFibonacciDigitRecursively(int p_ndigit) {

if (p_ndigit < 3)

return 1;

return getFibonacciDigitRecursively(p_ndigit - 1) +

getFibonacciDigitRecursively(p_ndigit - 2);

} //end method

• We can generally solve this problem through...

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

21212121Memoization

• Memoization is a technique for speeding algorithms
where we keep solving the same subproblem over again.

• This is done by recording every subproblem answered,
and then reusing that answer if we ever need to solve
that problem again.

/**Get digit p_ndigit in the Fibonacci sequence in O(p_ndigit)*/

static int getFibonacciDigitMemoized(int p_ndigit) {

return getFibonacciDigitMemoized(p_ndigit, new int[p_ndigit]);

} //end method

/**helper method for getFibonacciDigitMemoized(int)*/

private static int getFibonacciDigitMemoized(int p_ndigit, int[] p_amemo) {

if (p_ndigit < 3)

return 1;

if (p_amemo[p_ndigit] != 0)

return p_amemo[p_ndigit];

return p_amemo[p_ndigit] =

getFibonacciDigitMemoized(p_ndigit - 1, p_amemo) +

getFibonacciDigitMemoized(p_ndigit - 2, p_amemo);

} //end method

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

22222222Think About...

For each of the following pairs, which is better
and why?

• getFibonacciDigitRecursively(32)

• getFibonacciDigitMemoized(32)

• getFibonacciDigitRecursively(1234567890)

• getFibonacciDigitMemoized(1234567890)

• getFibonacciDigitRecursively(46)

• getFibonacciDigitRecursively(48)

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

23232323Memoization Implementation

• The key to memoization is to have a set where elements can be
accessed randomly using a canonical representation of all the input
parameters.

• For functions which use n non-negative/unsigned int, short,
boolean/bool, char, or byte parameters (no longs... why?), this is most
easily implemented by an n-dimensional memoization array.

• For functions which use boolean arrays (bool[<= 32] in C/C++,
boolean[<= 64] in Java), the array can be compressed into a single int,
and used as a single dimension in the memoization array.

• For functions using String/string parameters, or one which takes
negative integer parameter values, a map must be used in place of an
array.
Note: this decreases the function’s efficiency (e.g. replacing the array
with a Map in our getFibonacciDigitMemoized function changes
it from O(n) to O(n*log(n)).

• IMPORTANT: Functions using either Object or real number
parameters (float/double/etc.) cannot be memoized.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

24242424Memoization Etymology (what, no ‘R’?)

• Coined by Donald Michie in his 1968 paper "Memo

Functions and Machine Learning" in Nature.

• Memoization is derived from the Latin word memorandum,

meaning what must be remembered. In common parlance,

a memorandum is abbreviated as memo,

and thus “memoization” means “to

turn (a function) into a memo”.

• The word memoization is often

confused with memorization,

which, although a good

description of the process, is not

limited to this specific meaning.

Source: Wikipedia contributors. “Memoization.” Wikipedia, The Free Encyclopedia. March 2005. Available: http://en.wikipedia.org/w/index.php?title=Memoization&oldid=42692224

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

25252525Abnormal Psych 101 (Coin Changer Problem)

• Unfortunately, even the Rain Man gets a bit slow when he has to

change anything more than a few cents, and the

manager is getting really close to firing him.

• Raymond’s brother Charlie decides to

help him count the possibilities faster by

showing Raymond a DP algorithm...

• Raymond is a high-functioning autistic savant

with obsessive compulsive disorder who can

calculate complicated algorithms in his head.

• Right now he’s working as a cashier, but every

time he make changes he needs to tell the

customer all the different ways he can do it,

otherwise he’s going to have an episode.

“15 cents... a dime and a nickel... a dime and five pennies... three nickels... two nickels

and five pennies... one nickel and ten pennies... fifteen pennies... 6 ways to make 15

cents... gotta watch Wapner.”

Rain Man. Dir. Barry Levinson. Perfs. Dustin Hoffman, Tom Cruise. Film. United Artists, 1988.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

26262626Coin Changer Code
static int coinChanger(int p_nsum, int[] p_acoin) {

return coinChanger(p_nsum, p_acoin.length - 1, p_acoin, new int[p_nsum + 1][p_acoin.length]);

} //end method

private static int coinChanger(int p_nsum, int p_ncoin, int[] p_acoin, int[][] p_amemo) {

int nret;

//recursive base cases

if (p_nsum == 0)

return 1;

else if (p_ncoin < 0)

return 0;

//memoization short circuit

nret = p_amemo[p_nsum][p_ncoin];

if (nret != 0)

if (nret < 0)

return 0;

else

return nret;

//recurse

for (int nsum = 0; nsum <= p_nsum; nsum += p_acoin[p_ncoin])

nret += coinChanger(p_nsum - nsum, p_ncoin - 1, p_acoin, p_amemo);

//memoization

p_amemo[p_nsum][p_ncoin] = (nret != 0) ? nret : -1;

return nret;

} //end method

Questions:

• What’s goes in the p_acoin array?

• What are the subproblems?

• What’s special about memoizing 0? Why could

we do better with C/C++?

• Why 2 methods? Do we need both?

• What’s the efficiency of this algorithm?

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

27272727Hamiltonian Paths and Cycles
• A Hamiltonian Path is a walk within a directed

graph which visits each node exactly once, and

uses no (undirected) edge more than once.

• These are a close cousins of a Euler Paths and

Cycles, which visit each edge at exactly once,

but may revisit nodes.

• A Hamiltonian Cycle is a Hamiltonian Path

which ends at the same node where it started.

• Hamiltonian Paths and Cycles are named after

mathematician William Rowan Hamilton (1805-

1865) who invented a game called the Icosian

Game which involves finding cycles around

dodecahedrons (12-faced 3D shapes).

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

28282828Hamiltonian Cycle Code
static boolean hamiltonianCycle(boolean[][] p_agraph) {

int nnodes = p_agraph.length;

int nlastNode = nnodes - 1;

return hamiltonianCycle(p_agraph,

0,

(1 << nlastNode) - 2,

new boolean[nnodes][1 << nlastNode]);

} //end method

private static boolean hamiltonianCycle(boolean[][] p_agraph,

int p_nnode,

int p_nseen,

boolean[][] p_amemo) {

if (p_nseen == 0)

return p_agraph[p_nnode][0];

if (p_amemo[p_nnode][p_nseen])

return false;

p_amemo[p_nnode][p_nseen] = true;

for (int i = 0, nbit = 1; i < p_agraph.length; i++, nbit <<= 1)

if (((p_nseen & nbit) != 0) && p_agraph[p_nnode][i])

if (hamiltonianCycle(p_agraph, i, p_nseen ^ nbit, p_amemo))

return true;

return false;

} //end method

Questions:

• What is the running

time of this algorithm?

• What would the

running time be

without memoization?

• What’s going on with

the p_nseen parameter?

• What’s the largest

graph we can handle?

• Can this algorithm

scale? Why or why

not?

• How do we turn this

into a Hamiltonian

Path algorithm?

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

29292929Traveling Salesman Problem

The Traveling Salesman Problem is the

problem of finding the shortest possible

Hamiltonian cycle:

• There is a salesman who has a list of

cities he must visit.

• Every city on his list must be visited exactly once, and the

salesman must end up back where he started to file

expenses or whatever.

• There is a known travel cost (e.g. airfare) in moving from

city to city, but not necessarily connected to geography.

• The total trip must be have the lowest cost possible.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

30303030Traveling Salesman History

• This problem was first introduced by Karl Menger (1902-

1985) during a 1930 mathematical conference in Vienna.

• This problem first appeared in print in Menger’s article "Das

botenproblem," published in Ergebnisse eines

Mathematischen Kolloquiums in 1932.

• Originally, the problem statement translated to “the

messenger problem” and involved a postman trying to deliver

letters using an optimal route, instead of a traveling salesman.

• The Travelling Salesman is also a silent
film released in 1916 by Paramount
Studios about a travelling salesman who
finds romance and has a hilarious set of
misadventures on his way home for
Christmas.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

31313131Traveling Salesman Code
static int tsp(int[][] p_agraph) {

int nnodes = p_agraph.length;

int nlastNode = nnodes - 1;

return tsp(p_agraph, 0, 0, (1 << nlastNode) - 2,

new int[nnodes][1 << nlastNode]);

} //end method

private static int tsp(int[][] p_agraph, int p_nnode,

int p_ndist, int p_nseen,

int[][] p_amemo) {

int nret = Integer.MAX_VALUE;

if (p_nseen == 0)

return p_ndist + p_agraph[p_nnode][0];

if (p_amemo[p_nnode][p_nseen] != 0)

return p_amemo[p_nnode][p_nseen];

for (int i = 0, nbit = 1; i < p_agraph.length; i++, nbit <<= 1)

if (((p_nseen & nbit) != 0) && (p_agraph[p_nnode][i] != 0))

nret = Math.min(nret, tsp(p_agraph, i, p_ndist + p_agraph[p_nnode][i],

p_nseen ^ nbit, p_amemo));

return p_amemo[p_nnode][p_nseen] = nret;

} //end method

Questions:

• Look familiar? What’s

changed?

• What happens if the

shortest path has a length

of 0?

• Can this algorithm handle

negative edge weights?

Why or why not?

• What’s the efficiency of

this algorithm? How can

we improve it?

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

32323232Irish Problem

• 364 practice days.

• 1 St. Patrick's Day.

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

33333333Questions?

CPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming IICPSC490 11.3: Dynamic Programming II David Freedman and Igor Ostrovsky Friday 2006 March 17

34343434References
Bellman, Richard. Eye of the Hurricane: An Autobiography. World Scientific Pub Co Inc, 1984.

ISBN: 9971966018.

Frank and Igor. “Dynamic Programming.” University of British Columbia, CS490. Available: Mike
and Dustin.

Michie, Donald. “Memo Functions and Machine Learning.” Nature, 218:19-22. Macmillan Publishers, 1968.

Rain Man. Dir. Barry Levinson. Perfs. Dustin Hoffman, Tom Cruise. Film. United Artists, 1988.

Tan, Gang. “Chapter 6: Dynamic Programming.” Boston College, CS383. Fall 2005. Available:
http://www.cs.bc.edu/~gtan/teaching/cs383f5/slides/cs383_06dynamic-programming.pdf

Wikipedia contributors. “Dynamic programming” Wikipedia, The Free Encyclopedia. March 2005.
Available: http://en.wikipedia.org/wiki/Dynamic_programming

Wikipedia contributors. “Hamiltonian path” Wikipedia, The Free Encyclopedia. March 2005. Available:
http://en.wikipedia.org/wiki/Hamiltonian_path

Wikipedia contributors. “Knapsack problem” Wikipedia, The Free Encyclopedia. February 2005.
Available: http://en.wikipedia.org/wiki/Knapsack_problem

Wikipedia contributors. “Longest increasing subsequence problem” Wikipedia, The Free Encyclopedia.
January 2005. Available: http://en.wikipedia.org/wiki/Longest_increasing_subsequence_problem

Wikipedia contributors. “Memoization” Wikipedia, The Free Encyclopedia. March 2005. Available:
http://en.wikipedia.org/wiki/Memoization

Wikipedia contributors. “Optimal substructure” Wikipedia, The Free Encyclopedia. January 2005.
Available: http://en.wikipedia.org/wiki/Optimal_substructure

Wikipedia contributors. “Overlapping subproblem” Wikipedia, The Free Encyclopedia. February 2005.
Available: http://en.wikipedia.org/wiki/Overlapping_subproblem

Wikipedia contributors. “Traveling salesman problem” Wikipedia, The Free Encyclopedia. March 2005.
Available: http://en.wikipedia.org/wiki/Traveling_salesman_problem

