Dynamic Programming II

CPSC490 Lecture 11.3

Friday 2006 March 17
David Freedman and Igor Ostrovsky

- Non DP stuff:
- dUFLP/dHUNG Naming Conventions (xBase)
- Binary Arithmetic Review
- Today we'll be looking at these DP topics...
- Memoization
- The Coin Changer Problem
- Hamiltonian Paths and Cycles
- The Travelling Salesman Problem

dUFLP/dHUNG Variable Conventions

- Standard for "xBase" family of languages (dBase, Clipper, Paradox, Fox Pro, etc.)
- dUFLP = dBase Users Functional Library Project, the dBase (later xBase standards group)
- dHUNG = "Simplified Hungarian," also known as "Short Hungarian" and "Hungarian without the Arian"
- Hallmark feature: The first letter of each variable denotes it's type.
- Key differences between dHUNG and Hungarian notation:
- type codes correspond to dBase standard type names
- only 1 letter is used for each type
- types don't chain (an array of integers is just "a" not "an")
- The original goal was that this would be a cross-language standard.
- bastardizations of the standard (less standard standards, like the one you're about to see), sometimes find their way into functional/OOP languages.
xBase Types Applied to C/C++/Java/JavaScript/Basic... 5

Scope Prefix

i, o: input/output parameters

- used instead of " p " for languages where functions return values by changing parameters (usually database languages like ABAP or SQL).
- also used for recordset fields for stored procedures which take table parameters
- $\mathbf{i}=$ input parameter, which will be read and not be modified. Can pass a variable or a literal.
- $\mathbf{o}=$ output parameter, which will not be read but will be modified. Must pass a variable, cannot pass a literal.

Why would we ever want to do this?

- Makes it easier to understand code in implicitly typed languages (esp. scripting languages) like JavaScript or VBScript
- Simplifies translating code between languages
- Simplifies collaboration on multilingual projects (and reduces the amount of documentation required!)

Binary Arithmetic Review

How are numbers in other systems decoded to decimal?

binary 10 is decimal 2 . hexadecimal 10 is decimal 16 .

Why is this important? (Look over at the decimal chart)

Positive Number Systems in Binary

How are numbers in encoded in binary?

- Binary numbers and hexadecimal numbers have a special relationship: every 4 digits in a binary number correspond to 1 hexadecimal digit, and vice versa.

$0 \leftrightarrow 0000$	$8 \leftrightarrow 1000$
$1 \leftrightarrow 0001$	$9 \leftrightarrow 1001$
$2 \leftrightarrow 0010$	$\mathrm{a} \leftrightarrow 1010$
$3 \leftrightarrow 0011$	$\mathrm{b} \leftrightarrow 1011$
$4 \leftrightarrow 0100$	c $\leftrightarrow 1100$
$5 \leftrightarrow 0101$	$\mathrm{d} \leftrightarrow 1101$
$6 \leftrightarrow 0110$	$\mathrm{e} \leftrightarrow 1110$
$7 \leftrightarrow 0111$	$\mathrm{f} \leftrightarrow 1111$

- C, which before the $C 99$ standard did not have an explicit boolean type, defines special "logical" operators which treat integers as entirely zero or non-zero. This is also true of JavaScript (which I've always thought was closer to C than it is to Java).
- These operators can be thought of in terms of the bitwise operators (though in practice the below definitions are less efficient)

logical and	$x \& \& y$	$(\mathrm{x}=0$? 0 : 1) \& $(\mathrm{y}==0$? $0: 1)$	
logical or	$\mathrm{x} \\| 1 \mathrm{y}$	($\mathrm{x}=0$ 0 ? 0: 1) $\mid(\mathrm{y}==0$? $0: 1)$	
logical xor	$\mathrm{x}^{\text {^ }} \mathrm{y}$	$(\mathrm{x}==0$? $0: 1) \wedge(\mathrm{y}==0$? $0: 1)$	
logical not		$\sim(y=0$? 0 : 1)	

- Unlike their bitwise counterparts, there are no assignment operators in either Java or C for any of these operators.

$$
\text { - ! = does not have the same relation to ! as } \sim=\text { does to } \sim
$$

- Java also defines these operators, but they can only be used with two boolean variables (likewise, in Java, the bitwise can only be used with two integers)

Left shift operator: <<

- right fills with 0
- $x \ll y=x * 2^{y}$

Signed right shift operator: >>

- left fills by copying the leftmost bit
$\gg 2$
- $x \gg y==x / 2^{y}$ for signed numbers

Unsigned right shift operator: >>>

- left fills with 0 (opposite of \ll)
- $x \ggg y==x / 2^{y}$ for unsigned numbers (even in Java which doesn't explicitly support unsigned numbers!)
- 2^{n} : $1 \ll n$
- Multiply $x * 2^{n}$: x $\ll \mathrm{n}$
- Set bit n of x : $\quad \mid=1 \ll \mathrm{n}$
- Test bit n of x : $\mathrm{x} \&(1 \ll \mathrm{n})==0$
- Get the n leftmost bits of x (also $x \div 2^{n}$):

$$
x \&((1 \ll n)-1)
$$

- Binary decompression (get the n bits m bits from the left of x):

$$
\begin{aligned}
& (x \gg m) \&((1 \ll n)-1) \\
& \text { e.g. if } x=r * 2^{3}+c \text { where } 0 \leq r, c,<2^{3} \text {, then } \\
& c==x \&((1 \ll 3)-1)
\end{aligned}
$$

$r==(x \gg 3) \&((1 \ll 3)-1)$

Iterative DP

- All the examples we've looked at so far have been iterative examples.
- Iterative algorithms are those where each step builds forward from the previous step.

Example of an iterative algorithm:
//Get the p_ndigit ${ }^{\text {th }}$ digit in the Fibonacci sequence in O (p_ndigit)
static int getFibonacciDigitIteratively(int p_ndigit) \{
int[] aprev = \{ 1, 1 \};
int nidx $=0$;
for (int $i=2$; $\left.i<p _n d i g i t ; i++\right)$
aprev[nidx $\wedge=1]=$ aprev[0] + aprev[1];
return aprev[nidx];
\} //end method

Psst: we're ignoring the non-DP, $O(\log ($ digit $))$ solution to this problem!

finally... DP!

- Another way to build a DP function is to start from the solution and work backwards, loading subproblems on the fly.
- However, a side effect of working backwards is that we very often end up resolving the same subproblem multiple times.

```
/**Get digit p_ndigit in the Fibonacci sequence in O(1.65p_ndigit)*/
static int getFibonacciDigitRecursively(int p_ndigit) {
    if (p_ndigit < 3)
        return 1;
    return getFibonacciDigitRecursively(p_ndigit - 1) +
        getFibonacciDigitRecursively(p_ndigit - 2);
} //end method
```

- We can generally solve this problem through...
- Memoization is a technique for speeding algorithms where we keep solving the same subproblem over again.
- This is done by recording every subproblem answered, and then reusing that answer if we ever need to solve that problem again.

```
/**Get digit p_ndigit in the Fibonacci sequence in O(p_ndigit)*/
static int getFibonacciDigitMemoized(int p_ndigit)
    return getFibonacciDigitMemoized(p_ndigit, new int[p_ndigit]);
} //end method
    /**helper method for getFibonacciDigitMemoized(int)*/
    private static int getFibonacciDigitMemoized(int p_ndigit, int[] p_amemo) {
        if (p_ndigit < 3)
        return 1;
        if (p_amemo[p_ndigit] != 0)
            return p_amemo[p_ndigit];
        return p_amemo[p_ndigit] =
            getFibonacciDigitMemoized(p_ndigit - 1, p_amemo) +
                getFibonacciDigitMemoized(p_ndigit - 2, p_amemo);
        / end method
```

For each of the following pairs, which is better and why?

- getFibonacciDigitRecursively(32)
- getFibonacciDigitMemoized(32)
- getFibonacciDigitRecursively(1234567890)
- getFibonacciDigitMemoized(1234567890)
- getFibonacciDigitRecursively(46)
- getFibonacciDigitRecursively(48)
- The key to memoization is to have a set where elements can be accessed randomly using a canonical representation of all the input parameters.
- For functions which use n non-negative/unsigned int, short, boolean/bool, char, or byte parameters (no longs... why?), this is most easily implemented by an n-dimensional memoization array.
- For functions which use boolean arrays (bool[<=32] in $\mathrm{C} / \mathrm{C}++$, boolean $[<=64]$ in Java), the array can be compressed into a single int, and used as a single dimension in the memoization array.
- For functions using String/string parameters, or one which takes negative integer parameter values, a map must be used in place of an array.
Note: this decreases the function's efficiency (e.g. replacing the array with a Map in our getFibonacciDigitMemoized function changes it from $\mathrm{O}(\mathrm{n})$ to $\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$
- IMPORTANT: Functions using either Object or real number parameters (float/double/etc.) cannot be memoized.

Memoization Implementation ${ }_{23}$

Memoization Etymology (what, no 'R'?)

- Coined by Donald Michie in his 1968 paper "Memo Functions and Machine Learning" in Nature.
- Memoization is derived from the Latin word memorandum, meaning what must be remembered. In common parlance, a memorandum is abbreviated as memo, and thus "memoization" means "to turn (a function) into a memo".
- The word memoization is often confused with memorization, which, although a good description of the process, is not limited to this specific meaning.

Coin Changer Code

- Raymond is a high-functioning autistic savant with obsessive compulsive disorder who can calculate complicated algorithms in his head.
- Right now he's working as a cashier, but every time he make changes he needs to tell the customer all the different ways he can do it, otherwise he's going to have an episode.
" 15 cents... a dime and a nickel... a dime and five pennies... three nickels... two nickels and five pennies... one nickel and ten pennies... fifteen pennies... 6 ways to make 15 cents... gotta watch Wapner.,
- Unfortunately, even the Rain Man gets a bit slow when he has to change anything more than a few cents, and the manager is getting really close to firing him.
- Raymond's brother Charlie decides to help him count the possibilities faster by showing Raymond a DP algorithm...

Hamiltonian Cycle Code

static boolean hamiltonianCycle(boolean[][] p_agraph)
int nnodes $=$ p_agraph. length;
int nlastNode $=$ nnodes -1 ;
return hamiltonianCycle(p_agraph,

(1 << nlastNode)

new boolean [nnodes][1 \ll nlastNode]);
//end method
private static boolean hamiltoniancycle(boolean[][] p_agraph, int p_nnode,
int p_nseen,
boolean [][] P_amemo)
if (p _nseen $==0$)
return P _agraph [p_nnode] [0];
if (p_amemo [p nnode] [p_nseen]) return false;
p_amemo[p_nnode][p_nseen] = true;
for (int $i=0$, nbit $=1$; $i<p _a g r a p h . l e n g t h ; ~ i++$, nbit \ll
if (($($ p_nseen \& nbit) $!=0) \& \&$ p_agraph[p_nnode][i])
if (hamiltonianCycle(p_agraph, i, p_nseen ^ nbit, p_amemo)) return true;
return false;
fetan fals

The Traveling Salesman Problem is the problem of finding the shortest possible Hamiltonian cycle:

- There is a salesman who has a list of cities he must visit.

- Every city on his list must be visited exactly once, and the salesman must end up back where he started to file expenses or whatever.
- There is a known travel cost (e.g. airfare) in moving from city to city, but not necessarily connected to geography.
- The total trip must be have the lowest cost possible.
- This problem was first introduced by Karl Menger (19021985) during a 1930 mathematical conference in Vienna.
- This problem first appeared in print in Menger's article "Das botenproblem," published in Ergebnisse eines Mathematischen Kolloquiums in 1932.
- Originally, the problem statement translated to "the messenger problem" and involved a postman trying to deliver letters using an optimal route, instead of a traveling salesman.
- The Travelling Salesman is also a silent film released in 1916 by Paramount Studios about a travelling salesman who finds romance and has a hilarious set of misadventures on his way home for
 Christmas.

```
static int tsp(int[][] p_agraph),
    int nnodes = p_agraph.length;
    int nlastNode = nnodes - 1;
    return tsp(p_agraph, 0, 0, (1 << nlastNode) - 2,
        new int[nnodes][1<< nlastNode]);
//end method
\[
\begin{gathered}
\text { return tsp(p_agraph, 0, } 0,(1 \ll \text { nlastNode) }) \text { - } \\
\text { new int [nnodes] [1 } \ll \text { nlastNode]); }
\end{gathered}
\]
```

 private static int tsp(int[][] p_agraph, int p_nnode,
 int p_ndist, int p_nseen,
 int p_ndist, int p_
 int [][] p_amemo)
int nret $=$ Integer. MAX_VALUE;
int nret $=$ Integer
if (p _nseen $==0$)
return p_ndist + p_agraph[p_nnode][0];
if (p_amemo [p_nnode][p_nseen] ! = 0)
(p_amemo [p_nnode] [p_nseen] ! = 0)
return p_amemo [p_nnode] [p_nseen] ;
or (int i $=0$, nbit $=1$; i $<$ _neenl;
if (((p_nseen \& nbit) != 0) \&\& (p_agraph[p_nnode][i] != 0))

return p_amemo [p_nnode][p_nseen] = nret;
return p_amem
/end method

Questions:

- Look familiar? What's changed?
- What happens if the shortest path has a length of 0 ?
- Can this algorithm handle negative edge weights? Why or why not?
private static int tsp(int[][] p_agraph, int p_nnode, int p_ndist, int p_nseen,
int nret $=$ Integer. MAX_VALUE;
f (p_nseen $==0$)
return p_ndist + p_agraph[p_nnode][0];
if ($\mathrm{p} _$amemo $\left[\mathrm{p} _\right.$nnode] [p_nseen] ! $=0$)
- What's the efficiency of this algorithm? How can we improve it?
if ((p _nseen \& nbit) $!=0$) \&\& (p_agraph [p_nnode] [i] ! $=0)$)
nret $=$ Math.min(nret, $\operatorname{tsp}\left(p _\right.$agraph, i, p_ndist + p_agraph [p_nnode][i], P_nseen
$=$ nret;

Traveling Salesman Code

- 364 practice days.

Irish Problem

- 1 St. Patrick's Day.

References

Bellman, Richard. Eye of the Hurricane: An Autobiography. World Scientific Pub Co Inc, 1984 ISBN: 9971966018.
Frank and Igor. "Dynamic Programming." University of British Columbia, CS490. Available: Mike and Dustin.
Michie, Donald. "Memo Functions and Machine Learning." Nature, 218:19-22. Macmillan Publishers, 1968 Rain Man. Dir. Barry Levinson. Perfs. Dustin Hoffman, Tom Cruise. Film. United Artists, 1988. Tan, Gang. "Chapter 6: Dynamic Programming." Boston College, CS383. Fall 2005. Available http://www.cs.bc.edu/~gtan/teaching/cs383f5/slides/cs383_06dynamic-programming.pdf
Wikipedia contributors. "Dynamic programming" Wikipedia, The Free Encyclopedia. March 2005. Available: http://en.wikipedia.org/wiki/Dynamic_programming
Wikipedia contributors. "Hamiltonian path" Wikipedia, The Free Encyclopedia. March 2005. Available: http://en.wikipedia.org/wiki/Hamiltonian_path
Wikipedia contributors. "Knapsack problem" Wikipedia, The Free Encyclopedia. February 2005. Available: http://en.wikipedia.org/wiki/Knapsack_problem
Wikipedia contributors. "Longest increasing subsequence problem" Wikipedia, The Free Encyclopedia. January 2005. Available: http://en.wikipedia.org/wiki/Longest_increasing_subsequence_problem Wikipedia contributors. "Memoization" Wikipedia, The Free Encyclopedia. March 2005. Available: http://en.wikipedia.org/wiki/Memoization
Wikipedia contributors. "Optimal substructure" Wikipedia, The Free Encyclopedia. January 2005 Available: http://en.wikipedia.org/wiki/Optimal_substructure
Wikipedia contributors. "Overlapping subproblem" Wikipedia, The Free Encyclopedia. February 2005 Available: http://en.wikipedia.org/wiki/Overlapping_subproblem
Wikipedia contributors. "Traveling salesman problem" Wikipedia, The Free Encyclopedia. March 2005 Available: http://en.wikipedia.org/wiki/Traveling_salesman_problem

