
CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

1111

Dynamic Programming I

CPSC490 Lecture 11.2

Wednesday 2006 March 15

David Freedman and Igor Ostrovsky

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

2222Etymology of Dynamic Programming
• Richard Bellman, the of Bellman-Ford algorithm fame,

invented dynamic programming in 1953.1

• Bellman was dependent on government funding at a time
when the American Secretary of Defence was “hostile to
mathematical research,” and so he came up
with the name as “something not even a
congressman could object to.” 2

• Dynamic was intended as a
synonym for pejorative (to
make worse). 3

• Programming was intended to
be the mathematical concept of
programming, as in linear
programming4 (ask a
mathematician, I don’t know).

1,4 Tan, Gang. “Chapter 6: Dynamic Programming.” Boston College, CS383. Fall 2005. Available: http://www.cs.bc.edu/~gtan/teaching/cs383f5/slides/cs383_06dynamic-programming.pdf
2,3 Wikipedia contributors. “Dynamic Programming.” Wikipedia, The Free Encyclopedia. March 2005. Available: http://en.wikipedia.org/w/index.php?title=Dynamic_programming

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

3333What Are Some DP Problems?

• DP problems we’ve already seen in this
course are:

– Bellman-Ford shortest path algorithm

– Dijkstra’s shortest path algorithm

• Classic DP problems we’ll be looking at
today are:
– longest increasing subsequence problem

– backpacker problem / knapsack problem

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

4444Longest Increasing Subsequence Problem

• Given a set of numbers, pick out, in order of appearance, as elements
as possible such that each chosen element picked is larger than the
previously picked element.

• For example, given the set:
{ 14, 1, 17, 2, 16, 17, 3, 15, 4, 1, 5, 18, 13, 6, 7, 19, 8, 12, 1, 9, 10, 8 }

the long increasing subset is:
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

• How do we solve this problem? Forget about it for now, we’ll get to it
later.

• How is this a DP problem? Before we answer that, we must first
answer...

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

5555What is Dynamic Programming?

• Dynamic programming is not an algorithm

• Dynamic programming is not a style of

programming.

• Dynamic programming is the set of

problems which have both overlapping

subproblems and optimal substructure.

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

6666What Is An Optimal Substructure?

• A problem with an optimal substructure is

one which can be expressed entirely in

terms of overlapping subproblems.

• ...but what’s an overlapping subproblem?

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

7777Overlapping Subproblems

• Overlapping subproblems are simple

problems which have to be solved

repeatedly to solve the overall problem.

• In the longest increasing subsequence

problem, we can break it down into:

– What is the longest increasing subsequence that

ends at each element?

– What is the longest of any of those

subsequences?

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

8888Longest Increasing Subsequence Implementation

Q: What is the longest increasing subsequence that ends at each element?

A: If this is the smallest

item we’ve seen so

far, then it’s the only

item in the set.

Otherwise, find the

previous item with

the longest-longest

subset which is

smaller than the

element, and set the

longest subset of this

element to the union

of the element and

that subset.

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

9999Longest Increasing Subsequence Code

static int longestIncreasingSubsequence(int[] p_asuperSequence) {

int[] abest = new int[p_asuperSequence.length];

int nret = 0;

for (int i = 0; i < p_asuperSequence.length; i++) {

for (int j = 0; j < i; j++)

if (p_asuperSequence[i] > p_asuperSequence[j])

abest[i] = Math.max(abest[i], abest[j] + 1);

nret = Math.max(nret, abest[i]);

} //next i

return nret + 1;

} //end method

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

10101010Think About...

• Why is a shortest path problem DP?

• What are the subproblems of the Bellman-

Ford algorithm?

• What are the subproblems of Dijkstra’s

algorithm?

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

11111111Backpacker/Knapsack Problem

This is one of the classic DP problems. Here’s the general
problem:

There is a guy with a knapsack of capacity c who can only
carry items which fit into that knapsack. (c may be a weight,
or a volume, it doesn’t really matter).

The guy has available to him a set of items, each of which has
a value, and wants to load up his knapsack with
the most valuable set of items which he can
carry, and he needs to do it quickly.

I’ve often imagined the guy is a

shoplifter, because who else might

have these requirements?

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

12121212Subproblems of the Backpacker Problem

• There are two subproblems within the
backpacker problem:

– Examine subsets of the items: if the items
available are { i0, i1 .. in }, then, for every
integer k from 0..n, consider only the subset of
items i0 .. ik.

– Much less intuitively, examine lesser maximum
capacities: if the maximum capacity is c, then
for every integer w from 0..c, find the
maximum value of of a subset of the subset
i0 .. ik whose weight is < w.

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

13131313Backpacker Implementation
Items:

item A 1kg $100

item B 3kg $200

item C 5kg $301

item D 7kg $400

item E 9kg $500

Max Weight: 10kg

How to calculate each cell:

for every cell [x, y]

if x = 0 or y = 0, then
cell[x, y] := 0kg $0 { }

otherwise

let m := the item for column y

let w := the weight of m

if w is more than the row's maximum weight

cell[x, y] := cell[x - 1, y]

otherwise

cell[x, y] := the pricier of cell[x - 1, y] and (cell[x - 1, y - w] + m)

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

14141414Backpacker Implementation
Items:

item A 1kg $100

item B 3kg $200

item C 5kg $301

item D 7kg $400

item E 9kg $500

Max Weight: 10kg

How to calculate each cell:

for every cell [x, y]

if x = 0 or y = 0, then
cell[x, y] := 0kg $0 { }

otherwise

let m := the item for column y

let w := the weight of m

if w is more than the row's maximum weight

cell[x, y] := cell[x - 1, y]

otherwise

cell[x, y] := the pricier of cell[x - 1, y] and (cell[x - 1, y - w] + m)

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

15151515Backpacker Questions

• Do we really need to keep track of the weights,
values, and items?

• Do we need a huge 2-dimensional array?

• What's the running time of this algorithm?

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

16161616Backpacker Questions

• Do we really need to keep track of the weights,
values, and items?

– Absolutely not. At a minimum, we need the cost,
although we may want the weight or item list depending
on whether we were asked to list the items, state the
value, or state the weight.

• Do we need a huge 2-dimensional array?

– You could use a full 2d matrix like we just saw (most
examples on the web do), but as we only look at two
columns at at time, it's possible to implement this using
two arrays of whose length is the maximum weight
(next slide)

• What's the running time of this algorithm?

– O(items * weight)

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

17171717Backpacker Code

static int backpackerMaxValue(int p_nmaxWeight, int[] p_aweight, int[] p_acost) {

int ncurr = 0, nprev = 1; //column indices. invar: ncurr ∈ { 0, 1 }, nprev == 1 - ncurr
int nweight; //row index, also max weight for the row

int[][] abestValue = new int[2][p_nmaxWeight + 1]; //optimal value for each row

//for the current (ncurr) and

//previous (nprev) columns.

//for every item

for (int nitem = 0; nitem < p_acost.length; nitem++) {

//ignore items heavier than the knapsack

if (p_aweight[nitem] > p_nmaxWeight)

continue;

//swap ncurr and nprev

ncurr = (nprev = ncurr) ^ 1;

//for all rows where the item is heavier than the row’s maximum weight

for (nweight = 1; nweight < p_aweight[nitem]; nweight++)

abestValue[ncurr][nweight] = abestValue[nprev][nweight];

//for all rows where the item is at most than the row’s maximum weight

for (; nweight <= p_nmaxWeight; nweight++)

abestValue[ncurr][nweight] = Math.max(

abestValue[nprev][nweight - p_aweight[nitem]] + p_acost[nitem],

abestValue[nprev][nweight]

);

} //next nitem

return abestValue[ncurr][p_nmaxWeight];

} //end method

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

18181818Questions?

CPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming ICPSC490 11.2: Dynamic Programming I David Freedman and Igor Ostrovsky Wednesday 2006 March 15

19191919References
Bellman, Richard. Eye of the Hurricane: An Autobiography. World Scientific Pub Co Inc, 1984.

ISBN: 9971966018.

Frank and Igor. “Dynamic Programming.” University of British Columbia, CS490. Available: Mike
and Dustin.

Michie, Donald. “Memo Functions and Machine Learning.” Nature, 218:19-22. Macmillan Publishers, 1968.

Rain Man. Dir. Barry Levinson. Perfs. Dustin Hoffman, Tom Cruise. Film. United Artists, 1988.

Tan, Gang. “Chapter 6: Dynamic Programming.” Boston College, CS383. Fall 2005. Available:
http://www.cs.bc.edu/~gtan/teaching/cs383f5/slides/cs383_06dynamic-programming.pdf

Wikipedia contributors. “Dynamic programming” Wikipedia, The Free Encyclopedia. March 2005.
Available: http://en.wikipedia.org/wiki/Dynamic_programming

Wikipedia contributors. “Hamiltonian path” Wikipedia, The Free Encyclopedia. March 2005. Available:
http://en.wikipedia.org/wiki/Hamiltonian_path

Wikipedia contributors. “Knapsack problem” Wikipedia, The Free Encyclopedia. February 2005.
Available: http://en.wikipedia.org/wiki/Knapsack_problem

Wikipedia contributors. “Longest increasing subsequence problem” Wikipedia, The Free Encyclopedia.
January 2005. Available: http://en.wikipedia.org/wiki/Longest_increasing_subsequence_problem

Wikipedia contributors. “Memoization” Wikipedia, The Free Encyclopedia. March 2005. Available:
http://en.wikipedia.org/wiki/Memoization

Wikipedia contributors. “Optimal substructure” Wikipedia, The Free Encyclopedia. January 2005.
Available: http://en.wikipedia.org/wiki/Optimal_substructure

Wikipedia contributors. “Overlapping subproblem” Wikipedia, The Free Encyclopedia. February 2005.
Available: http://en.wikipedia.org/wiki/Overlapping_subproblem

Wikipedia contributors. “Traveling salesman problem” Wikipedia, The Free Encyclopedia. March 2005.
Available: http://en.wikipedia.org/wiki/Traveling_salesman_problem

