Computer Animation CPSC 426

Fall 2005 Robert Bridson

Lectures

- Slides will be on the web site, in the schedule
 - Note: may not print properly from Acrobat on UNIX machines -- use pdf2ps to keep embedded fonts
- Take notes to augment the slides
 - I will say and write important things on the board that are not on the slides
- Stop me if you're confused
 - One of the biggest lessons in university: always ask if you don't understand!

Contact

- Robert Bridson, <u>rbridson@cs.ubc.ca</u>
- Office hours: Thu 3-4, Fri 11-12 or by appointment
- CS building X663
- TA:
 - Derek Bradley, <u>dereko5@cs.ubc.ca</u>
- Web:

http://www.cs.ugrad.ubc.ca/~cs426

Reference

- Text: Computer Animation, R. Parent
 - I'll try to cover all the material in class lectures; use this as a second opinion and reference if you want
- Web:
 - I'll post links or suggest papers to read on the course website
 - Other resources as appropriate
- For programming:
 - Favourite C++ reference, OpenGL books, RenderMan, ...

Evaluation

- Assignment o: 5% (warm-up)
- 3 real assignments: 10% + 10% + 10%
 - Programming plus some theory
- More details on how to submit in the assignments
- Final project: 25%
 - Short film or interactive piece
 - Do it in teams
- Final exam: 40%

Facilities

- Computer labs same as cs314
 - Linux machines tuxnn.ugrad.cs.ubc.ca and linnn.ugrad.cs.ubc.ca
 - Downstairs in CICSR 011 and 005
- Software:
 - GLUT, Pixie (RenderMan), ffmpeg
 - See web-page for more information
- I will provide starter code in C++

Policies

- Late
 - Without a good reason, I subtract 20% per day late; demo deadlines are firm and can't be extended.
- Cheating
 - UBC policy is very clear on cheating (e.g. plagiarism) of any kind
 - See UBC policy #69
 - http://www.universitycounsel.ubc.ca/policies/ policy69.html

What this course isn't

- This is about the computer science of animation, not the art (or industry)
 - No animation packages
 - But you might still want to check out Maya, Houdini, SoftImage, 3Ds Max, Blender, ...
 See the web-page for links
- For the final project you will produce a small animation
 - But it doesn't have to be a "real" film!
 Think 10-20 second demonstration of techniques.

Overview

- Animation principles
- Keyframing and interpolation
 - Artist specifies almost everything, the computer just makes it smooth
- Kinematics
 - Joints, articulated figures
- Procedural animation
 - Rules and simulations automatically produce the animation
- Data driven
 - Motion capture
- Advanced topics

Notes

- Please find and read:
 - John Lasseter, "Principles of traditional animation applied to 3D animation", SIGGRAPH'87
 - For SIGGRAPH papers, find on the ACM Digital Library, <u>www.acm.org/dl</u> (accessible from a UBC computer)
- Summarized in text, section 1.2.6 (pp. 10-12)
 - And for your interest, check out rest of chapter 1 on history, how production works, etc.

Assignment o

- Find it on the web
- Get a strip of clear 16mm film at my office hours tomorrow
- Use **permanent** felt-tip markers to draw an animation, frame by frame
 - Write your name at the start!
- Return to me on Monday in office hours
 - No late submissions accepted!
- Also a simple math problem (warm up), hand in on Monday too

Animation Basics

- Persistence of vision
 - We see a bright flash for a while after it's gone
 - A sequence of images shown fast enough is hard to distinguish from true motion
 - What is fast enough?
 - Foveal vs. Peripheral vision
- Frame rate (fps=frames per second)
 - Film: 24
 - Often shown at 48, each frame twice, to reduce flicker
 - Sometimes animated "on twos" = 12fps, "on threes" = 8fps, or even slower
 - TV: ~30 for NTSC, 25, for PAL
 - Interlaced double the speed to reduce flicker
 - Computers: 60Hz or more, games prefer 60fps

Motion Blur

- Every bit of light persists in our vision for a while---fast moving objects leave a blurred streak
- Similarly, film/video cameras leave shutter open for a while
 - Moving objects blurred from position at start of shutter time to position at end
- Without motion blur (or tricks to simulate it) get strobing effect
 - Temporal aliasing -- akin to "jaggies"
 - Spinning wheels
 - Stop Motion vs. Go Motion

Next Class

- Splines: the basis for smooth movement
- Assignment o has a question on splines, along with a brief introduction
 - I'll go through it in class on Friday

Aside: Rendering Motion Blur

- Note: if strobing not apparent, don't bother
 - Also, sometimes already accounted for in animation (see later: "squash and stretch", "exaggeration")
- Ideally, figure out how to render to best fool the human eye
 - But nobody has figured that out: instead render to mimic a regular movie camera
- At each pixel, don't just compute the light coming into the camera at an instant
- Instead sum up the light that hits the camera during the shutter time
 - Approximate with appropriate sampling