
1

Notes

! Textbook: matchmove 6.7.2, B.9

2

Match Move

! For combining CG effects with real
footage, need to match synthetic camera
to real camera: “matchmove”

! Too unreliable to just measure camera
movement mechanically
! In some shots can actually use computer

motor control of camera to follow path

! Useful for its consistency, but bias makes it
useless for match move

! Instead need to estimate camera
parameters from footage

3

Match points

! Need to identify image space positions
of enough world space points
! 3 non-collinear if field-of-view known, 4 if

not

! More points can improve robustness
! Also deal with camera distortions

! Typically identify points by hand
! For difficult scenes (grass?) may need

computer vision techniques, or just put
stuff in the scene to track (and paint over
later)

4

Solving match move

! Nonlinear equations can be difficult

! Probably need to use optimization to
find robust solution from multiple
uncertain points

! May use through-the-lens techniques to
avoid nonlinearity - except for first
frame - or at least to start the nonlinear
solver on subsequent frames

! May need interactive help to lock on
! Enter the matchmove artist

5

Particle Systems

6

Particle Systems

! For fuzzily defined phenomena, highly
complex motion, etc. particle systems provide
a (semi-)automatic means of control

! Break up complex phenomena into many
(hundreds, thousands, or more) component
parts

! E.g. fire into tiny flames

! Instead of animating each part by hand,
provide rules and overall guidance for
computer to construct animation

7

When in doubt…

! Used to model particle-like stuff:
dust, sparks, fireworks, leaves, flocks, water
spray…

! Also phenomena with many DOF:
fluids (water, mud, smoke, …), fire,
explosions, hair, fur, grass, clothing, …

! Three things to consider:

! When and where particles start

! The rules that govern motion (and additional
attached variables, e.g. colour)

! How to render the particles

8

What is a particle?

! Most basic particle only has a position x
! Usually add other attributes, such as:

! Age
! Colour
! Radius
! Orientation
! Velocity v
! Mass m
! Temperature
! Type

! The sky is the limit - e.g. AI models of agent
behaviour

9

Seeding

! Need to add (or seed) particles to the scene
! Where?

! Randomly within a shaped volume or on a surface
! At a point
! Where there aren’t many particles currently

! When?
! At the start
! Several per frame
! When there aren’t enough particles somewhere

! Need to figure out other attributes, not just
position
! E.g. velocity pointing outwards in an explosion

10

Basic animation

! Specify a velocity field v(x,t) for any
point in space x, any time t

! Break time into steps

! E.g. per frame - !t=1/30th of a second

! Or several steps per frame

! Change each particle’s position xi by
“integrating” over the time step
(Forward Euler)

�

x
i

new
= x

i
+ !tv x

i
,t()

11

Velocity fields

! Velocity field could be a combination of
pre-designed velocity elements

! E.g. explosions, vortices, …

! Or from “noise”

! Smooth random number field

! See later

! Or from a simulation

! Interpolate velocity from a computed grid

! E.g. smoke simulation

12

Second order motion

! Real particles move due to forces
! Newton’s law F=ma
! Need to specify force F (gravity, collisions, …)
! Divide by particle mass to get acceleration a
! Update velocity v by acceleration
! Update position x by velocity

�

v
i

new
= v

i
+ !t

F(x
i
,v

i
,t)

m
i

x
i

new
= x

i
+ !tv

i

new

13

Time integration

! Really solving ordinary differential equations in time:

! Methods presented before are called “Forward Euler”
and “Symplectic Euler”

! There are better numerical methods

! These are the simplest that can work - but big issue is
stability - more on this later

�

dx
i

dt
= v x

i
,t() or

dx
i

dt
= v

i

dv
i

dt
=
1

m
i

F x
i
,v

i
,t()

!

"

$

14

Basic rendering

! Draw a dot for each particle
! But what do you do with several particles per

pixel?
! Add: models each point emitting (but not

absorbing) light -- good for sparks, fire, …
! More generally, compute depth order, do alpha-

compositing (and worry about shadows etc.)
! Can fit into Reyes very easily

! Anti-aliasing
! Blur edges of particle, make sure blurred to cover

at least a pixel

! Particle with radius: kernel function

15

Motion blur

! One case where you can actually do
exact solution instead of sampling

! Really easy for simple particles

! Instead of a dot, draw a line
(from old position to new position - the
shutter time)

! May involve decrease in alpha

! More accurately, draw a spline curve

! May need to take into account radius as
well…

