
1

Notes

2

Atop

! The simplest (useful) and most common
form of compositing: put one image
“atop” another

! Image 1 (RGB) on top of image 2 (RGB)

! For each pixel in the final composite,
need to know what RGB value to take

! Where image 1 is opaque, choose RGB1

! Where image 1 is “empty”, choose RGB2

! Where image 1 is partly transparent, or
where image 1 only covers part of the pixel?

3

Alpha

! We add another channel, alpha: RGBA

! Encodes whether the pixel of the image is
empty (alpha=0) or opaque (alpha=1) or
something in between (0<alpha<1)
! Most important case: at the edges of objects

! When we render a layer, we compute and save
alpha along with RGB
! Or if it’s real action, use a “blue screen” behind the

actors, estimate alpha

! Premultiplied alpha: instead of storing
regular RGB + alpha, store
rgb=alpha*R, alpha*G, alpha*B and alpha
! Simplifies formulas to come

4

Atop operation

! Image 1 “atop” image 2

! Assume independence of sub-pixel structure
! So for each final pixel, a fraction alpha1 is covered

by image 1

! Rest of final pixel (a fraction of 1-alpha1) is covered
partly by image 2 (fraction alpha2) and partly
uncovered

! Without premultiplied alpha:
! Rfinal=alpha1*R1 + (1-alpha1)*alpha2*R2

! Gfinal=alpha1*G1 + (1-alpha1)*alpha2*G2

! Bfinal=alpha1*B1 + (1-alpha1)*alpha2*B2

! alphafinal=alpha1 + (1-alpha1)*alpha2



5

Premultiplied

! Using standard premultiplied alpha, formulas
simplify:

! Rfinal=r1 + (1-alpha1)*r2

! Gfinal=g1 + (1-alpha1)*g2

! Bfinal=b1 + (1-alpha1)*b2

! alphafinal=alpha1 + (1-alpha1)*alpha2

! And of course store the result premultiplied:

! rfinal=alphafinal*Rfinal

! gfinal=alphafinal*Gfinal

! bfinal=alphafinal*Bfinal

6

Note on gamma

! Recall gamma: how nonlinear a particular
display is
! When you send a signal for fraction x of full

brightness, actual brightness output from display
is a nonlinear function of x
! Called gamma since usually modeled as x!

! For final image, for a particular display, should
correct for gamma

! But when we’re taking linear combinations of
RGB values, need to do it before gamma
correction!
! Similarly for real life elements, camera output is

distorted, needs to be undone before compositing

7

3D Rendering

8

Sampling and Filtering

! For high quality images need to do
! Antialiasing - no jaggies

! Motion blur - no strobing

! Possibly depth-of-field - no pinhole camera

! Boils down to:
! Each pixel gets light from a number of different

objects, places, times

! Figuring out where: point sampling
! Find light at a particular place in the pixel, at a

particular time, …

! Combining the nearby point samples into
RGBA for each pixel: filtering
! Simplest is box filter (average the samples in pixel)



9

How to get point samples

! Three big rendering algorithms

! Z-buffer / scanline

!Graphics Hardware - OpenGL etc.

! Ray tracing

!Highly accurate rendering

!Difficult models (e.g. volumetric stuff)

! REYES

!Almost everything you see in film/TV

10

REYES

! Invented at Lucasfilm (later Pixar) by Cook et
al. SIGGRAPH ‘87

! Geometry is diced up into grids of
micropolygons (quads about one pixel big)

! Each micropolygon is “shaded” in parallel to
get a colour+opacity (RGBA)

! Then sent to “hiding” to determine in which
point samples it makes a contribution

! Each point sample keeps a sorted list of
visible points, composites them together
when done

! Filter blends point samples to get final pixels


