
1

Notes

! Questions?

! Assignment 1 should be ready soon (will
post to newsgroup as soon as it’s out)

2

Gauss-Newton

! Idea: nonlinear least-squares is hard, but
linear least-squares is easy

! So replace the nonlinear function
x(!)-xtarget

with a linear approximation:
J(!- !k) + x(!k)-xtarget

" Then solve the linear least-squares problem to
get the “Gauss-Newton” direction:

dk=(JTJ)-1JT(xtarget-x(!k))

" This avoids the scaling problem of Steepest
Descent, and is much more efficient

" Problem: need to solve a linear system

3

Scaled Steepest Descent (SSD)

! Replace the matrix JTJ we need to invert
with something simpler: diag(JTJ)

! Diagonal matrices are trivial to invert

! But guard against zero entries!

4

Evaluating Jacobians

! Simplest approach in code:
numerical approximate with a finite
difference

! Can also work out derivative analytically
by hand (a little painful)

J
ij
=
!x

i

!"
j

#
x
i
("
1
,…,"

j
+ $,…,"

n
) % x

i
("
1
,…,"

j
,…,"

n
)

$

5

When to stop

! In our case, absolute minimum of f(.) is
zero: stop when it’s smaller than some
tolerance

! It might be impossible to get to zero, but
at the minimum #f=0: stop when |#f|

is small enough

"Or give up when maximum number of
iterations reached

6

Character Rigging

! A “rig” is a model together with a UI for
posing it

! At its simplest, a skeleton with joint angles
available for motion curves

! May simplify DOF by enforcing relationships
between joints
! E.g. hand and fingers

! May define standard poses (especially for
facial expressions!) that can be mixed
together
! Then can set sliders to, say, 70% happy, 20%

surprised, …

! Take weighted linear combination of pose angles

7

Breaking Rigs

! Who said animated figures had to have rigid
parts?
! Remember animation principles:

stretch & squash, exaggeration, etc.

! Often attractive to break up a rigid skeleton
into separate parts (e.g. torso, arms, legs,
head)
! Allow connecting links to change dimension as

needed

! Kinematics only done on a small part - artist
doesn’t need to worry about effect on whole
(local vs. global control)

! “If it ain’t broken, then fix it”

8

What’s left?

! We now have the basics of animation

! Plan for next while:

! Rendering animations

! (Semi-)automatic animation

! Dynamics for rigid bodies

! Particle systems

! Skinning, morphing, blending

! Motion capture

! Motion control

9

Rendering for Film

10

Compositing

! The action of combining multiple “layers” --
parts of each frame -- into the final shot
! E.g. background + actors + vfx

! For vfx-intensive shots, there could be dozens of
separate layers

! Handling each layer separately
! makes the problem simpler,

! allows better division of labour,

! and gives flexibility in putting the elements
together at the end
(often the majority of CPU time is spent in
compositing!)

11

Atop

! The simplest (useful) and most common
form of compositing: put one image
“atop” another

! Image 1 (RGB) on top of image 2 (RGB)

! For each pixel in the final composite,
need to know what RGB value to take

! Where image 1 is opaque, choose RGB1

! Where image 1 is “empty”, choose RGB2

! Where image 1 is partly transparent, or
where image 1 only covers part of the pixel?

