
1

Notes

! Handing assignment 0 back (at the
front of the room)

! Read the newsgroup!

! Planning to put 16mm films on the web
soon (possibly tomorrow)

2

Forward Kinematics

! A simple layered approach
! Get the root link moving first (e.g. the pelvis)

! Fix the pose outward, link by link (the back and
the legs next, then the head, the arms, the hands,
the fingers, ...)

! Great for certain types of motion
! General acting, moving in free space, ...

! Problems when interacting with other objects
! How do you make sure fingers are exactly in

contact with a doorknob throughout a scene, as
the arm moves, as the body moves, ...

! Even simpler: how do you make sure the feet stay
planted on the ground? (avoiding “foot-skate”)

3

Inverse Kinematics (IK)

! Keep the same tree structure,
fix the root,
get the body into roughly the right pose

! Specify a target position (maybe
orientation too) for an “end-effector”

! Solve system of equations for the joint
angles that achieve the target

! This is really just a user interface for the
computer to help you set the joint
angles to what you want

4

IK Applications

! Obvious application in robotics:
robot arm needs to figure out how to
reach something

! Used in graphics as an efficient UI for
animating grasping, contact, foot plants,
etc.

! Also used in graphics for automatic
corrections
(later in the term: footskate cleanup)

5

IK issues 1

! Too many joints: there are many
solutions, how do you pick the best one?
! Often add constraints---e.g. keep the arm

in the specified plane so it doesn’t rotate
wildly

! Minimize some quantity---e.g. the sum of
squares of differences from original rough
pose (or previous frame)

! Try to keep poses close to a set of known
good poses (e.g. from motion capture data)

6

IK issues 2

! Target impossible (or just barely
possible) --- not enough degrees of
freedom

! Try to get as close as possible to the target
in some sense

! Penalize bad joint angles, huge differences
from initial pose

! So if pose is only just possible, via some weird
unrealistic angles, we don’t do it

7

How do you do IK?

! Simple skeletons: analytic solutions
may exist
! Look up formulas from papers

(or textbook)

! Not fun, not flexible

! More generally: numerical solution of
optimization problem
! Minimize difference between actual end-

effort pose and the target

! Possibly include constraints
! E.g. joint angle limits, collisions

8

IK as optimization

! Unconstrained optimization problem:

! In our case:

! theta is a vector of all the joint angles

! f(.) is a measure of the distance between
the pose of the end-effector and the target

! Start from an initial guess, use
algorithms to steadily make better
guesses until close enough

min
!

f (!)

9

Line Search Approach

! Say we have guess !k
" Pick a “direction” dk to search along

" Look for new guess as !k+1= !k+$dk

" Line search: figure out a scalar $
(the “step size”) that will make f(!k+1) smaller
than f(!k)

"Assuming dk is scaled properly, simplest
algorithm:
"Check $=1: if it’s an improvement stop

"Otherwise halve $ and try again

" If dk is “downhill” dk•#f<0 then guaranteed
to improve if $ is small enough

10

Picking the direction

! Cyclic Coordinate Descent: in each
direction, pick a different axis to move
along (adjust just one angle at a time)

! Problem 1: scaling isn’t clear

! Problem 2: extremely inefficient, might not
converge at all

! Steepest Descent: use the direction that
f(.) is decreasing most rapidly in: -#f

! Problem 1: scaling isn’t clear

! Problem 2: inefficient for difficult f

11

More on Steepest Descent

! Typically we have a nonlinear
least-squares problem:

f(!)=1/2|x(!)-xtarget|
2

"In this case, -#f=JT(xtarget -x(!))
where J=!x/!! is the Jacobian

"Then sometimes this is called the
“Jacobian method”

