
1

Notes

! Assignment 0 marks should be ready by
tonight (hand back in class on Monday)

2

Review

! Motion Curve: A curve describing how an
animation parameter changes in time (or
abstract parameter u)

! Retiming Curve: An extra curve which
indicates what u values to evaluate at for each
frame time. Use to change how fast a motion
takes place without changing the motion
trajectory.

! Arclength Parameterization: For more
intuitive retiming of an object position, user’s
timing curve specifies arclength s, not
abstract parameter u.

3

Calculating Arc Length

! Recall definition of arc length:

! Where x(u) is the 3D position of the curve at
parameter value u

! Really three curves: X(u), Y(u), Z(u)

! Approximate by splitting curve up into linear
segments (sample u finely), add up lengths of
those segments

! Build a table of approximate u,s(u) pairs

�

s(u) =
d
!
x

du
du

0

u

!

4

Computing Inverse Map

! From these pairs of u,s(u) values, how
to calculate u(s)?

! Treat the s values as knots, the
corresponding u values as control points

! Pass a Catmull-Rom spline through it

! Evaluate spline for any value of s you
want (from the retiming curve)

5

Kinematics

6

Kinematics

! The study of how things move

! Usually boils down to describing the
motion of articulated rigid figures

! Things made up of rigid “links” attached to
each other at movable joints (articulation)

! There are many mathematical
approaches to this description

! Text: sections 2.2 and 4.2
(and more advanced: 6.1 and 6.2)

7

Links

! The actual geometry of each link is
irrelevant for kinematics

! But typically corresponds to a bone, or a
solid piece of metal, or ...

! All that matters is that they have an
attached coordinate system

! That is an “origin” -- the base point for
doing measurements relative to the link --
and a set of basis vectors -- three
orthogonal directions relative to the link

8

Joints

! A joint connects two links
! Attachment point has to be specified in both

coordinate systems

! Often simplified by making sure attachment is the
origin of one of the links

! Also specify how basis vectors of the two are
related (rotation)

! A joint can have up to six degrees of freedom
(DOF) - three translations, three rotations

! For animation, usually just concerned with
rotations (for robotics, maybe not): revolute
! That is, how are the basis vectors of the second

link rotated from the basis vectors of the first?

9

Reality Check

! This boils down to how we model real
joints in the body

! E.g. from a distance:
! Elbow has 1 DOF: the angle the forearm

makes with the upper arm (rotation in
plane)

! Wrist has 3 DOF

! ...

! Up close, life can be much more
complex: no simple attachment

10

Joint Decomposition

! Often write multiple-DOF joints as a
sequence of 1-DOF joints connecting
imaginary links between them

! D-H notation

! For each joint-link sequence, specify
displacement and angles in standard
format

11

Hierarchical Skeletons

! Usually a character (or a robot) has no loops -
-- link/joint graph is a tree

! Pick an arbitrary link to be the root

! Settle on its coordinate system with respect to
the world
! 6 DOF: position + orientation (more on this later)

! For attached links, get translation and
rotation from root’s coordinate system to
neighbours’ coordinate systems

! Go through the tree to the tips (“end-
effectors”) concatenating transformations

! This is “Forward Kinematics” (FK)

