## Notes

- Assignment o marks should be ready by tonight (hand back in class on Monday)


## Review

- Motion Curve: A curve describing how an animation parameter changes in time (or abstract parameter u)
- Retiming Curve: An extra curve which indicates what u values to evaluate at for each frame time. Use to change how fast a motion takes place without changing the motion trajectory.
- Arclength Parameterization: For more intuitive retiming of an object position, user's timing curve specifies arclength s , not abstract parameter $u$.


## Calculating Arc Length

- Recall definition of arc length:

$$
s(u)=\int_{0}^{u}\left|\frac{d \vec{x}}{d u}\right| d u
$$

- Where $\mathrm{x}(\mathrm{u})$ is the 3 D position of the curve at parameter value u
- Really three curves: $\mathrm{X}(\mathrm{u}), \mathrm{Y}(\mathrm{u}), \mathrm{Z}(\mathrm{u})$
- Approximate by splitting curve up into linear segments (sample u finely), add up lengths of those segments
- Build a table of approximate $\mathrm{u}, \mathrm{s}(\mathrm{u})$ pairs


## Computing Inverse Map

- From these pairs of $\mathrm{u}, \mathrm{s}(\mathrm{u})$ values, how to calculate $\mathrm{u}(\mathrm{s})$ ?
- Treat the s values as knots, the corresponding u values as control points
- Pass a Catmull-Rom spline through it
- Evaluate spline for any value of s you want (from the retiming curve)


## Kinematics

$\qquad$

## Links

- The actual geometry of each link is irrelevant for kinematics
- But typically corresponds to a bone, or a solid piece of metal, or ...
- All that matters is that they have an attached coordinate system
- That is an "origin" -- the base point for doing measurements relative to the link -and a set of basis vectors -- three orthogonal directions relative to the link


## Kinematics

- The study of how things move
- Usually boils down to describing the motion of articulated rigid figures
- Things made up of rigid "links" attached to each other at movable joints (articulation)
- There are many mathematical approaches to this description
- Text: sections 2.2 and 4.2 (and more advanced: 6.1 and 6.2)


## Joints

- A joint connects two links
- Attachment point has to be specified in both coordinate systems
- Often simplified by making sure attachment is the origin of one of the links
- Also specify how basis vectors of the two are related (rotation)
- A joint can have up to six degrees of freedom (DOF) - three translations, three rotations
- For animation, usually just concerned with rotations (for robotics, maybe not): revolute
- That is, how are the basis vectors of the second link rotated from the basis vectors of the first?


## Reality Check

- This boils down to how we model real joints in the body
- E.g. from a distance:
- Elbow has 1 DOF: the angle the forearm makes with the upper arm (rotation in plane)
- Wrist has 3 DOF
- ...
- Up close, life can be much more complex: no simple attachment


## Joint Decomposition

- Often write multiple-DOF joints as a sequence of 1-DOF joints connecting imaginary links between them
- D-H notation
- For each joint-link sequence, specify displacement and angles in standard format


## Hierarchical Skeletons

- Usually a character (or a robot) has no loops --- link/joint graph is a tree
- Pick an arbitrary link to be the root
- Settle on its coordinate system with respect to the world
- 6 DOF: position + orientation (more on this later)
- For attached links, get translation and rotation from root's coordinate system to neighbours' coordinate systems
- Go through the tree to the tips ("endeffectors") concatenating transformations
- This is "Forward Kinematics" (FK)

