
1

Notes

! Assignment 0 is being marked

! Textbook reference for arc-length
parameterization:

! Section 3.2

2

Review

! Cubic Hermite Spline: the standard
tool for animation. C1, interpolating,
local control. Smoothness easy to break
if needed: flexible!

! Catmull-Rom: a good default choice
for the slopes, based on finite difference
formulas

! Cubic B-Spline: C2, approximating,
local control. Not so useful for
animating in time, very useful for
defining geometry (see CS424)

3

Example Motion Curves

! The position of an object: X(t), Y(t), Z(t)

! Three separate splines

! The angle of a simple joint (e.g. elbow)

! The angles of a complex joint (e.g. hip)

! Two or more splines

! The size of an object

! Maybe separated along separate axes

! The colour of an object

! …

4

Using motion curves

! Simplest usage:

! Look at every parameter that changes
during the animation

! Use Hermite interpolation (initalized as
Catmull-Rom) based on time

! Allow user to adjust values, adjust slopes,
break continuity, add knots, move knots…

5

Problem

! Retiming animations is not so simple

! If you adjust a knot position, it changes the
shape of the curve, not just the speed

! Particularly for Hermite curves - slopes will
be off

! Partial solution: separate the shape of
the curve from its timing

6

Time as a Motion Curve

! Rename parameter of motion curves to “u”
! This is now just a measure of how far along the

curve you are, not a real quantity (yet)

! Then make a motion curve for time: u(t)
! At a particular time, say t=5/24 of a second,

evaluate spline u(t)=u(5/24)

! Then evaluate the other motion curves at this
value of u

! i.e. motion curves look like x(u(t))

! Could have one global timing curve u(t)

! Or separately adjust timing for each variable,
or group of variables

7

Parameterization

! Unsatisfactory still: u doesn’t really have a
good meaning

! For example, to make an object move with
constant speed along an arc, u(t) may be quite
complicated!

! For the case of position in space, introduce a
new map based on arc length
! Can easily control the speed of an object

! Timing curve will now be s(t), where s means how
far along the curve (in space)

8

Arc Length

! Arc length is just the length of a curve
! Think of wrapping a tape measure along the curve

! Definition:

! Where x(u) is the 3D position of the curve at
parameter value u
! Really three curves: X(u), Y(u), Z(u)

! Recall how to measure vector norm:

�

s(u) =
d
!
x

du
du

0

u

!

�

d
!
x

du
=

dX

du

!

"

$

%
&

2

+
dY

du

!

"

$

%
&

2

+
dZ

du

!

"

$

%
&

2

9

Inverse Map

! The question we really want to answer,
though, is what value of u gives us a specific
length s along the curve?

! i.e. invert the arc length function s(u)

! Let’s call this u(s)

! Then timing curve is s(t), which feeds into
u(s), which feeds into motion curve x(u):

! Position at time t is x(u(s(t)))

! Question remains: how to calculate u(s)?

10

Numerical Inversion

! Analytic approach is hopeless
! Even analytically solving the integral s(u) is hard,

solving for u in terms of s is crazy

! Numerical approach works fine

! Use approximate evaluation of s(u) to get a
table of values
! Cut up curve into small line segments, add up their

lengths

! Then interpolate a smooth curve through the
values (Catmull-Rom)
! Use table of s values as knots, associated u values

as control point values

