Notes

- Assignment o is being marked
- Textbook reference for arc-length parameterization:
- Section 3.2

Review

- Cubic Hermite Spline: the standard tool for animation. C^{1}, interpolating, local control. Smoothness easy to break if needed: flexible!
- Catmull-Rom: a good default choice for the slopes, based on finite difference formulas
- Cubic B-Spline: C^{2}, approximating, local control. Not so useful for animating in time, very useful for defining geometry (see CS424)

Using motion curves

- Simplest usage:
- Look at every parameter that changes during the animation
- Use Hermite interpolation (initalized as Catmull-Rom) based on time
- Allow user to adjust values, adjust slopes, break continuity, add knots, move knots...

Problem

- Retiming animations is not so simple
- If you adjust a knot position, it changes the shape of the curve, not just the speed
- Particularly for Hermite curves - slopes will be off
- Partial solution: separate the shape of the curve from its timing

Time as a Motion Curve

- Rename parameter of motion curves to "u"
- This is now just a measure of how far along the curve you are, not a real quantity (yet)
- Then make a motion curve for time: $u(t)$
- At a particular time, say $t=5 / 24$ of a second, evaluate spline $u(t)=u(5 / 24)$
- Then evaluate the other motion curves at this value of u
- i.e. motion curves look like $x(u(t))$
- Could have one global timing curve $u(t)$
- Or separately adjust timing for each variable, or group of variables

Parameterization

- Unsatisfactory still: u doesn't really have a good meaning
- For example, to make an object move with constant speed along an arc, $\mathrm{u}(\mathrm{t})$ may be quite complicated!
- For the case of position in space, introduce a new map based on arc length
- Can easily control the speed of an object
- Timing curve will now be $s(t)$, where s means how far along the curve (in space)

Arc Length

- Arc length is just the length of a curve
- Think of wrapping a tape measure along the curve
- Definition:

$$
s(u)=\int_{0}^{u}\left|\frac{d \vec{x}}{d u}\right| d u
$$

- Where $x(u)$ is the 3D position of the curve at parameter value u
- Really three curves: X(u), Y(u), Z(u)
- Recall how to measure vector norm:

$$
\left|\frac{d \bar{x}}{d u}\right|=\sqrt{\left(\frac{d X}{d u}\right)^{2}+\left(\frac{d Y}{d u}\right)^{2}+\left(\frac{d Z}{d u}\right)^{2}}
$$

Inverse Map

- The question we really want to answer, though, is what value of u gives us a specific length s along the curve?
- i.e. invert the arc length function $s(u)$
- Let's call this u(s)
- Then timing curve is $s(t)$, which feeds into $u(s)$, which feeds into motion curve $x(u)$:
- Position at time t is $x(u(s(t)))$
- Question remains: how to calculate $u(\mathrm{~s})$?

Numerical Inversion

- Analytic approach is hopeless
- Even analytically solving the integral $s(u)$ is hard, solving for u in terms of s is crazy
- Numerical approach works fine
- Use approximate evaluation of $\mathrm{s}(\mathrm{u})$ to get a table of values
- Cut up curve into small line segments, add up their lengths
- Then interpolate a smooth curve through the values (Catmull-Rom)
- Use table of s values as knots, associated u values as control point values

