## Notes

- Assignment o is due today!
- To get better feel for splines, play with formulas in MATLAB!


## Review

- Spline: piecewise polynomial curve
- Knots: endpoints of the intervals on which each polynomial is defined
- Control Points: knots together with information on the value of the spline (maybe derivatives too: Hermite splines)
- Interpolating: goes through control points
- Approximating: goes near control points
- Smoothness: $\mathrm{C}^{\mathrm{n}}$ means the $\mathrm{n}^{\text {th }}$ derivative is continuous across the control points


## Choices in Animation

- Piecewise linear usually not smooth enough
- For motion curves, cubic splines basically always used
- Three main choices:
- Hermite splines: interpolating, up to $\mathrm{C}^{1}$
- Catmull-Rom: interpolating $\mathrm{C}^{1}$
- B-splines: approximating $\mathrm{C}^{2}$


## Cubic Hermite Splines

- Our generic cubic in an interval $\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right]$ is
- $q_{i}(t)=a_{i}\left(t-t_{i}\right)^{3}+b_{i}\left(t-t_{i}\right)^{2}+c_{i}\left(t-t_{i}\right)+d_{i}$
- Make it interpolate endpoints:
- $q_{i}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}$ and $\mathrm{q}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}+1}\right)=\mathrm{y}_{\mathrm{i}+1}$
- And make it match given slopes:
- $q_{i}^{\prime}\left(t_{i}\right)=s_{i}$ and $q_{i}^{\prime}\left(t_{i+1}\right)=s_{i+1}$
- Work it out to get

$$
\begin{array}{ll}
a_{i}=\frac{-2\left(y_{i+1}-y_{i}\right)}{\left(t_{i+1}-t_{i}\right)^{2}}+\frac{s_{i}+s_{i+1}}{\left(t_{i+1}-t_{i}\right)^{2}} & c_{i}=s_{i} \\
b_{i}=\frac{3\left(y_{i+1}-y_{i}\right)}{\left(t_{i+1}-t_{i}\right)^{2}}-\frac{2 s_{i}+s_{i+1}}{\left(t_{i+1}-t_{i}\right)} & d_{i}=y_{i}
\end{array}
$$

## Hermite Basis

- Rearrange the solution to get
$y_{i}\left(\frac{2\left(t-t_{i}\right)^{3}}{\left(t_{i+1}-t_{i}\right)^{3}}-\frac{3\left(t-t_{i}\right)^{2}}{\left(t_{i+1}-t_{i}\right)^{2}}+1\right)+y_{i+1}\left(\frac{-2\left(t-t_{i}\right)^{3}}{\left(t_{i+1}-t_{i}\right)^{3}}+\frac{3\left(t-t_{i}\right)^{2}}{\left(t_{i+1}-t_{i}\right)^{2}}\right)$
$+s_{i}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(t_{i+1}-t_{i}\right)^{2}}-\frac{2\left(t-t_{i}\right)^{2}}{\left(t_{i+1}-t_{i}\right)}+\left(t-t_{i}\right)\right)+s_{i+1}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(t_{i+1}-t_{i}\right)^{2}}-\frac{\left(t-t_{i}\right)^{2}}{\left(t_{i+1}-t_{i}\right)}\right)$
- That is, we're taking a linear combination of four basis functions
- Note the functions and their slopes are either o or 1 at the start and end of the interval


## Breaking Hermite Splines

- Usually specify one slope at each knot
- But a useful capability: use a different slope on each side of a knot
- We break C ${ }^{1}$ smoothness, but gain control
- Can create motions that abruptly change, like collisions
- Aside: artists like to break things! Animation systems should have as much flexibility as possible


## Catmull-Rom Splines

- This is really just a $\mathrm{C}^{1}$ Hermite spline with an automatic choice of slopes
- Use a 2nd order finite difference formula to estimate slope from values
$s_{i}=\left(\frac{t_{i}-t_{i-1}}{t_{i+1}-t_{i-1}}\right) \frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}+\left(\frac{t_{i+1}-t_{i}}{t_{i+1}-t_{i-1}}\right) \frac{y_{i}-y_{i-1}}{t_{i}-t_{i-1}}$
- For equally spaced knots, simplifies to

$$
s_{i}=\frac{y_{i+1}-y_{i-1}}{t_{i+1}-t_{i-1}}
$$

## Catmull-Rom Boundaries

- Need to use slightly different formulas for the boundaries
- For example, 2nd order accurate finite difference at the start of the interval:

$$
s_{0}=\left(\frac{t_{2}-t_{0}}{t_{2}-t_{1}}\right) \frac{y_{1}-y_{0}}{t_{1}-t_{0}}-\left(\frac{t_{1}-t_{0}}{t_{2}-t_{1}}\right) \frac{y_{2}-y_{0}}{t_{2}-t_{0}}
$$

- Symmetric formula for end of interval
- Which simplifies for equal spaced knots:

$$
s_{0}=2 \frac{y_{1}-y_{0}}{\Delta t}-\frac{y_{2}-y_{0}}{2 \Delta t}
$$

## Aside: Evaluation

- There are two main ways to evaluate splines
- Subdivision
- Horner's rule
- I won't discuss subdivision (CPSC 424)
- Horner's rule: instead of directly computing $\mathrm{a}_{\mathrm{i}}\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}\right)^{3}+\mathrm{b}_{\mathrm{i}}\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}\right)^{2}+\mathrm{c}_{\mathrm{i}}\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}\right)+\mathrm{d}_{\mathrm{i}}$ use the more efficient expression

$$
\begin{aligned}
& x=t-t_{i} \\
& \left(\left(a_{i} x+b_{i}\right) x+c_{i}\right) x+d_{i}
\end{aligned}
$$

## B-Splines

- We'll drop the interpolating condition, and instead design a basis that is $\mathrm{C}^{2}$ smooth
- So control points say how much of each basis function to use, not exactly where the curve goes
- This time a basis function overlaps more than one interval
- Want to be able to interpolate constants
- We won't cover full derivation


## B-Spline Basis

- Define recursively, from zero-degree polynomials up to cubic (and beyond)

$$
\begin{aligned}
& B_{i+1 / 20}(t)= \begin{cases}1 & t \in\left[t_{i}, t_{i+1}\right] \\
0 & \text { otherwise }\end{cases} \\
& B_{i, 1}(t)=\frac{t-t_{i-1}}{t_{i}-t_{i-1}} B_{i-1 / z_{2}}(t)+\frac{t_{i+1}-t}{t_{i+1}-t_{i}} B_{i+1 / 20}(t) \\
& B_{i+1 / 22}(t)=\frac{t-t_{i-1}}{t_{i+1}-t_{i-1}} B_{i, 1}(t)+\frac{t_{i+2}-t}{t_{i+2}-t_{i}} B_{i+1,1,1}(t) \\
& B_{i, 3}(t)=\frac{t-t_{i-2}}{t_{i+1}-t_{i-2}} B_{i-1 / 22}(t)+\frac{t_{i+2}-t}{t_{i+2}-t_{i-1}} B_{i+1 / 22}(t)
\end{aligned}
$$

- Note: not well defined near start and end of knot sequence - you need more knots


## Looking at B-splines

- $B_{i, 3}(t)$ peaks at (or near) knot $t_{i}$, but is nonzero on the interval $\left[\mathrm{t}_{\mathrm{i}-2}, \mathrm{t}_{\mathrm{i}+2}\right]$
- Always $\geq 0$,

Always < 1,
Basis functions add up to 1 everywhere

- Any point on the spline curve is a weighted average of nearby control points


## Control

- Local control: adjusting a control point only changes curve locally
- Far away, curve stays exactly the same
- Global control: adjusting one control point changes entire curve
- Not as desirable - working on one part of the curve can perturb the parts you already worked out to perfection
- But, for decent splines, effect is small--decays quickly away from adjustment


## Controlling Cubics

- All three of the cubic splines we saw have local control
- But if we enforce $\mathrm{C}^{2}$ smoothness and make it interpolating, we end up with global control

