» Assignment 0 is due today!

» To get better feel for splines, play with
formulas in MATLAB!

» Spline: piecewise polynomial curve
» Knots: endpoints of the intervals on which
each polynomial is defined

» Control Points: knots together with
information on the value of the spline
(maybe derivatives too: Hermite splines)

» Interpolating: goes through control points
» Approximating: goes near control points

» Smoothness: C* means the nt derivative is
continuous across the control points

Choices in Animation

» Piecewise linear usually not smooth
enough
» For motion curves, cubic splines
basically always used
» Three main choices:
» Hermite splines: interpolating, up to Ct
» Catmull-Rom: interpolating C*
= B-splines: approximating C2

Cubic Hermite Splines

= Qur generic cubic in an interval [t,t;,,] is
= q;(t) = a;(t-1)3+Db;(t-t)2+c;(t-t)+d;

» Make it interpolate endpoints:
" qi(ti)=Yi and qi(ti+1)=Yi+1

» And make it match given slopes:
* q/(t)=s; and q;'(t;,)=s;,

» Work it out to get
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Hermite Basis

» Rearrange the solution to get
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» That is, we're taking a linear combination of four

basis functions

= Note the functions and their slopes are either o or 1 at the
start and end of the interval

Breaking Hermite Splines

» Usually specify one slope at each knot
= But a useful capability: use a different
slope on each side of a knot
» We break C* smoothness, but gain control

» Can create motions that abruptly change,
like collisions

» Aside: artists like to break things!
Animation systems should have as
much flexibility as possible

Catmull-Rom Splines

» This is really just a C* Hermite spline
with an automatic choice of slopes

= Use a 2nd order finite difference formula to
estimate slope from values
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» For equally spaced knots, simplifies to
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Catmull-Rom Boundaries

» Need to use slightly different formulas for the
boundaries

= For example, 2nd order accurate finite difference at
the start of the interval:
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. Symmetrlc formula for end of interval
= Which simplifies for equal spaced knots:
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Aside: Evaluation
» There are two main ways to evaluate
splines
» Subdivision
» Horner’s rule
» T won’t discuss subdivision (CPSC 424)
» Horner’s rule: instead of directly
computing a;(t-t,)3+b,(t-t)>+c;(t-t,)+d;
use the more efficient expression
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= We’ll drop the interpolating condition,
and instead design a basis that is C?
smooth

» So control points say how much of each
basis function to use, not exactly where the
curve goes

» This time a basis function overlaps
more than one interval

= Want to be able to interpolate constants
= We won’t cover full derivation

B-Spline Basis
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polynomials up to cubic (and beyond)
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= Note: not well defined near start and end of knot
sequence - you need more knots

Looking at B-splines
= B; ,(t) peaks at (or near) knot t;, but is
nonzero on the interval [t ,, t,,.]
= Always = o,
Always < 1,
Basis functions add up to 1 everywhere

» Any point on the spline curve is a weighted
average of nearby control points




Control

» Local control: adjusting a control point
only changes curve locally

» Far away, curve stays exactly the same
» Global control: adjusting one control
point changes entire curve

» Not as desirable - working on one part of
the curve can perturb the parts you already
worked out to perfection

» But, for decent splines, effect is small---
decays quickly away from adjustment

Controlling Cubics
.AllthreeoftheCUblcsphnesweSaw ..............
have local control

= But if we enforce C? smoothness and
make it interpolating, we end up with
global control




