
1

Notes

! Assignment 0 is due today!

! To get better feel for splines, play with
formulas in MATLAB!

2

Review

! Spline: piecewise polynomial curve

! Knots: endpoints of the intervals on which
each polynomial is defined

! Control Points: knots together with
information on the value of the spline
(maybe derivatives too: Hermite splines)

! Interpolating: goes through control points

! Approximating: goes near control points

! Smoothness: Cn means the nth derivative is
continuous across the control points

3

Choices in Animation

! Piecewise linear usually not smooth
enough

! For motion curves, cubic splines
basically always used

! Three main choices:

! Hermite splines: interpolating, up to C1

! Catmull-Rom: interpolating C1

! B-splines: approximating C2

4

Cubic Hermite Splines

! Our generic cubic in an interval [ti,ti+1] is
! qi(t) = ai(t-ti)

3+bi(t-ti)
2+ci(t-ti)+di

! Make it interpolate endpoints:
! qi(ti)=yi and qi(ti+1)=yi+1

! And make it match given slopes:
! qi’(ti)=si and qi’(ti+1)=si+1

! Work it out to get

�

ai =
!2 yi+1 ! yi()

ti+1 ! ti()
3

+
si + si+1

ti+1 ! ti()
2

ci = si

bi =
3 yi+1 ! yi()

ti+1 ! ti()
2
!
2si + si+1

ti+1 ! ti()
di = yi

5

Hermite Basis

! Rearrange the solution to get

! That is, we’re taking a linear combination of four
basis functions

! Note the functions and their slopes are either 0 or 1 at the
start and end of the interval

�

yi
2 t ! ti()

3

ti+1 ! ti()
3
!
3 t ! ti()

2

ti+1 ! ti()
2

+1
"

$ $

%

&

' ' + yi+1

!2 t ! ti()
3

ti+1 ! ti()
3

+
3 t ! ti()

2

ti+1 ! ti()
2

"

$ $

%

&

' '

+si
t ! ti()

3

ti+1 ! ti()
2
!
2 t ! ti()

2

ti+1 ! ti()
+ t ! ti()

"

$ $

%

&

' ' + si+1

t ! ti()
3

ti+1 ! ti()
2
!

t ! ti()
2

ti+1 ! ti()

"

$ $

%

&

' '

6

Breaking Hermite Splines

! Usually specify one slope at each knot

! But a useful capability: use a different
slope on each side of a knot
! We break C1 smoothness, but gain control

! Can create motions that abruptly change,
like collisions

! Aside: artists like to break things!
Animation systems should have as
much flexibility as possible

7

Catmull-Rom Splines

! This is really just a C1 Hermite spline
with an automatic choice of slopes

! Use a 2nd order finite difference formula to
estimate slope from values

! For equally spaced knots, simplifies to

�

si =
ti ! ti!1
ti+1

! ti!1

"

$

%

&
'
yi+1

! yi
ti+1

! ti
+

ti+1
! ti

ti+1
! ti!1

"

$

%

&
'
yi ! yi!1
ti ! ti!1

�

si =
yi+1

! yi!1

ti+1
! ti!1

8

Catmull-Rom Boundaries

! Need to use slightly different formulas for the
boundaries

! For example, 2nd order accurate finite difference at
the start of the interval:

! Symmetric formula for end of interval

! Which simplifies for equal spaced knots:

�

s
0

=
t
2
! t

0

t
2
! t

1

"

$

%

&
'
y
1
! y

0

t
1
! t

0

!
t
1
! t

0

t
2
! t

1

"

$

%

&
'
y
2
! y

0

t
2
! t

0

�

s
0

= 2
y
1
! y

0

"t
!
y
2
! y

0

2"t

9

Aside: Evaluation

! There are two main ways to evaluate
splines
! Subdivision

! Horner’s rule

! I won’t discuss subdivision (CPSC 424)

! Horner’s rule: instead of directly
computing ai(t-ti)

3+bi(t-ti)
2+ci(t-ti)+di

use the more efficient expression
 x=t-ti

 ((aix+bi)x+ci)x+di

10

B-Splines

! We’ll drop the interpolating condition,
and instead design a basis that is C2

smooth
! So control points say how much of each

basis function to use, not exactly where the
curve goes

! This time a basis function overlaps
more than one interval

! Want to be able to interpolate constants

! We won’t cover full derivation

11

B-Spline Basis

! Define recursively, from zero-degree
polynomials up to cubic (and beyond)

! Note: not well defined near start and end of knot
sequence - you need more knots

�

B
i+ 1

2,0
t() =

1 t ! t
i
,t
i+1[]

0 otherwise

"

$

B
i,1
t() =

t % t
i%1

t
i
% t

i%1

B
i%12,0

t() +
t
i+1 % t

t
i+1 % ti

B
i+ 1

2,0
t()

B
i+ 1

2,2
t() =

t % t
i%1

t
i+1 % ti%1

B
i,1
t() +

t
i+2 % t

t
i+2 % ti

B
i+1,1 t()

B
i,3
t() =

t % t
i%2

t
i+1 % ti%2

B
i%12,2

t() +
t
i+2 % t

t
i+2 % ti%1

B
i+ 1

2,2
t()

12

Looking at B-splines

! Bi,3(t) peaks at (or near) knot ti, but is
nonzero on the interval [ti-2, ti+2]

! Always ! 0,
Always < 1,
Basis functions add up to 1 everywhere

! Any point on the spline curve is a weighted
average of nearby control points

13

Control

! Local control: adjusting a control point
only changes curve locally

! Far away, curve stays exactly the same

! Global control: adjusting one control
point changes entire curve

! Not as desirable - working on one part of
the curve can perturb the parts you already
worked out to perfection

! But, for decent splines, effect is small---
decays quickly away from adjustment

14

Controlling Cubics

! All three of the cubic splines we saw
have local control

! But if we enforce C2 smoothness and
make it interpolating, we end up with
global control

