
1

Notes

2

Time integration for particles

! Back to the ODE problem, either

! Accuracy, stability, and ease-of-
implementation are main issues

! Obviously Forward Euler and Symplectic
Euler are easy to implement - how do they
fare in other ways?

�

dx
i

dt
= v x

i
,t() or

dx
i

dt
= v

i

dv
i

dt
=
1

m
i

F x
i
,v

i
,t()

!

"

$

3

Stability

! Do the particles fly off to infinity?

! Particularly a problem with stiff springs

! Can always be fixed with small enough time
steps - but expensive!

! Basically the problem is extrapolation:

! From time t we take aim and step off to time t+!t

! Called “explicit” methods

! Can turn this into interpolation:

! Solve for future position at t+!t that points back to
time t

! Called “implicit” methods

4

Backward Euler

! Simplest implicit method: very stable,
not so accurate, can be painful to
implement

! Again, can use for both 1st order and 2nd
order systems

! Solving the system for xn+1 often means
Newton’s method
(linearize as in Gauss-Newton)

�

x
n+1

= x
n

+ !t v(x
n+1
,t
n+1
)

5

Simplified Backward Euler

! Take just one step of Newton, i.e. linearize
nonlinear velocity field:

! Then Backward Euler becomes a linear
system:

�

v x
n+1() ! v xn() +

"v x
n()

"x
x
n+1

x
n()

�

x
n+1

= x
n

+ !t v xn() +
"v xn()
"x

x
n+1 # xn()

$

%

&
&

'

(

)
)

!x = !t v xn() +
"v xn()
"x

!x
$

%

&
&

'

(

)
)

I #
"v
"x

*

+
,

-

.
/ !x = !t v xn()

6

Particle Collisions

! Usually don’t want particles to go
through other objects

! In 1st order case (given velocity field)
need to change velocity field to avoid
collision

! Can work out special case formulas to make
particles stream around object

! More generally, add a repulsion force field

! As particle distance decreases, normal
force outward from object increases

7

Aside: Object Geometry

! When we talk about particles colliding with
objects, need to know how to represent
objects, and how to answer:
! Is particle inside/outside?

! Does particle trajectory cross?

! Object normal at some point on surface?

! Distance/direction to surface in space?

! Standard representations:
! Special geometry: plane, sphere, cylinder, prism…

! Heightfield: y=h(x,z)

! Triangle mesh, closed or open

! Implicit function
! Level set (special case)

8

Plane

! Represent with a point p on the plane, and the
(outward) normal n of the plane
! Often simply p=0, n=(0,1,0) --- the ground

! Particle x inside: (x-p)•n<0

! Trajectory cross: does (x-p)•n change sign?

! Object normal: always n

! Distance to surface: if n is unit length, (x-p)•n
is “signed distance”
! |(x-p)•n| is regular distance

! n or -n is direction to closest point on surface
(-n if x is outside)

9

Sphere

! Represent with a centre point p and a radius r

! Particle inside: |x-p|-r<0

! Trajectory cross: complicated!
! Need to solve quadratic equation for intersection

of straight line trajectory…

! Outward object normal: (x-p)/r

! Signed distance: |x-p|-r

! Direction to closest point on surface:
 ±(x-p)/|x-p|
! Sign depends on inside/outside

! Beware of divide by zero at x=p

! Note: matches up with normal again!

10

Heightfields

! Especially good for terrain - just need a 2d
array of heights (maybe stored as an image)
! Displacement map from a plane

! Split up plane into triangles

! Particle inside:
! Figure out which triangle (x,y) belongs to, check z

against equation of triangle’s plane

! Trajectory cross (stationary heightfield):
! Check all triangles along path (use 2d line-drawing

algorithm to figure out which cells to check)

! Object normal: get from triangle

! Distance etc.: not so easy, but vertical
distance easy for shallow heightfields

11

Triangle mesh

! For any decent size, need to use an
acceleration structure
! Could use background (hash-)grid, octree, kd-tree

! Also can use bounding volume (BV) hierarchy
! Spheres, axis-aligned bounding boxes, oriented bounding

boxes, polytopes, …

! More exotic structures exist…

! Particle inside (closed mesh):
! Shoot a ray out to infinity, count the number of

crossings

! Trajectory cross (stationary mesh):
! For each candidate triangle (from acceleration)

check a sequence of determinants

12

Triangle intersection

! Many, many ways to do this

! Most robust (and one of the fastest) is to do it
based on determinants
! For vectors a,b,c define

! Det(a,b,c)=±6 volume(tet(a,b,c)), the signed
volume of the tetrahedron spanned by edges a,b,c
from a common point

! Sign flips when tetrahedron reflected, or
alternatively from right-hand-rule on a!b•c

! Triangle intersection boils down to
! 2 sign checks: segment crosses plane

! 3 sign checks: line goes through triangle

�

det(a,b,c) =

ax ay az
bx by bz
cx cy cz

= a ! b " c()

13

Triangle Mesh (more)

! Object normal
! Normalize cross-product of two sides of the

triangle

! Distance from single triangle
! Find barycentric coordinates -- solve a least-

squares problem

! Need to clip to sides of triangle

! Compute distance from that point

! Note: also gives direction to closest point

! Distance (and direction) from mesh
! Compute for all possible triangles, take minimum

! Trick is to find small list of possible triangles with
acceleration structure

