Notes

Stability

- Do the particles fly off to infinity?
- Particularly a problem with stiff springs
- Can always be fixed with small enough time steps - but expensive!
- Basically the problem is extrapolation:
- From time t we take aim and step off to time $t+\Delta t$
- Called "explicit" methods
- Can turn this into interpolation:
- Solve for future position at $t+\Delta t$ that points back to time t
- Called "implicit" methods

Time integration for particles

- Back to the ODE problem, either

$$
\frac{d x_{i}}{d t}=v\left(x_{i}, t\right) \quad \text { or }\left\{\begin{array}{l}
\frac{d x_{i}}{d t}=v_{i} \\
\frac{d v_{i}}{d t}=\frac{1}{m_{i}} F\left(x_{i}, v_{i}, t\right)
\end{array}\right.
$$

- Accuracy, stability, and ease-ofimplementation are main issues
- Obviously Forward Euler and Symplectic Euler are easy to implement - how do they fare in other ways?

Backward Euler

- Simplest implicit method: very stable, not so accurate, can be painful to implement

$$
\mathbf{x}^{\mathbf{n + 1}}=x^{n}+\Delta t v\left(\mathbf{x}^{\mathbf{n + 1}}, t^{n+1}\right)
$$

- Again, can use for both 1st order and 2nd order systems
- Solving the system for $\mathrm{x}^{\mathrm{n}+1}$ often means Newton's method (linearize as in Gauss-Newton)

Simplified Backward Euler

- Take just one step of Newton, i.e. linearize nonlinear velocity field:

$$
v\left(x^{n+1}\right) \approx v\left(x^{n}\right)+\frac{\partial v\left(x^{n}\right)}{\partial x}\left(x^{n+1}-x^{n}\right)
$$

- Then Backward Euler becomes a linear
system:

$$
\begin{aligned}
& x^{n+1}=x^{n}+\Delta t\left[v\left(x^{n}\right)+\frac{\partial v\left(x^{n}\right)}{\partial x}\left(x^{n+1}-x^{n}\right)\right] \\
& \Delta x=\Delta t\left[v\left(x^{n}\right)+\frac{\partial v\left(x^{n}\right)}{\partial x} \Delta x\right] \\
& \left(I-\frac{\partial v}{\partial x}\right) \Delta x=\Delta t v\left(x^{n}\right)
\end{aligned}
$$

Aside: Object Geometry

- When we talk about particles colliding with objects, need to know how to represent objects, and how to answer:
- Is particle inside/outside?
- Does particle trajectory cross?
- Object normal at some point on surface?
- Distance/direction to surface in space?
- Standard representations:
- Special geometry: plane, sphere, cylinder, prism...
- Heightfield: $y=h(x, z)$
- Triangle mesh, closed or open
- Implicit function
- Level set (special case)

Particle Collisions

- Usually don't want particles to go through other objects
- In 1st order case (given velocity field) need to change velocity field to avoid collision
- Can work out special case formulas to make particles stream around object
- More generally, add a repulsion force field
- As particle distance decreases, normal force outward from object increases

Plane

- Represent with a point p on the plane, and the (outward) normal n of the plane
- Often simply $\mathrm{p}=\mathrm{o}, \mathrm{n}=(0,1, \mathrm{o})$--- the ground
- Particle x inside: $(x-p) \cdot n<0$
- Trajectory cross: does (x-p)•n change sign?
- Object normal: always n
- Distance to surface: if n is unit length, (x-p)•n is "signed distance"
- $|(\mathrm{x}-\mathrm{p}) \cdot \mathrm{n}|$ is regular distance
- n or -n is direction to closest point on surface (-n if x is outside)

Sphere

- Represent with a centre point p and a radius r
- Particle inside: $|x-p|-\mathrm{r}<0$
- Trajectory cross: complicated!
- Need to solve quadratic equation for intersection of straight line trajectory...
- Outward object normal: (x-p)/r
- Signed distance: |x-p|-r
- Direction to closest point on surface: $\pm(x-p) /|x-p|$
- Sign depends on inside/outside
- Beware of divide by zero at $\mathrm{x}=\mathrm{p}$
- Note: matches up with normal again!

Triangle mesh

- For any decent size, need to use an acceleration structure
- Could use background (hash-)grid, octree, kd-tree
- Also can use bounding volume (BV) hierarchy
- Spheres, axis-aligned bounding boxes, oriented bounding boxes, polytopes, ...
- More exotic structures exist...
- Particle inside (closed mesh):
- Shoot a ray out to infinity, count the number of crossings
- Trajectory cross (stationary mesh):
- For each candidate triangle (from acceleration) check a sequence of determinants

Heightfields

- Especially good for terrain - just need a 2 d array of heights (maybe stored as an image)
- Displacement map from a plane
- Split up plane into triangles
- Particle inside:
- Figure out which triangle (x, y) belongs to, check z against equation of triangle's plane
- Trajectory cross (stationary heightfield):
- Check all triangles along path (use 2 d line-drawing algorithm to figure out which cells to check)
- Object normal: get from triangle
- Distance etc.: not so easy, but vertical distance easv for shallow heightfields

Triangle intersection

- Many, many ways to do this
- Most robust (and one of the fastest) is to do it based on determinants
- For vectors a,b,c define $\operatorname{det}(a, b, c)=\begin{array}{lll}b_{x} & b_{y} & b_{z} \\ c_{x} & c^{2} & c^{2}\end{array} \quad \quad(=a \times b \cdot c)$

$$
\left.\begin{array}{|cc|}
c_{x} & c_{y} \\
\text { the } & c_{z}
\end{array} \right\rvert\,
$$

- $\operatorname{Det}(\mathrm{a}, \mathrm{b}, \mathrm{c})= \pm 6$ volume(tet(a,b,c)), the signed volume of the tetrahedron spanned by edges a, b, c from a common point
- Sign flips when tetrahedron reflected, or alternatively from right-hand-rule on $\mathrm{a} \times \mathrm{b} \cdot \mathrm{c}$
- Triangle intersection boils down to
- 2 sign checks: segment crosses plane
- 3 sign checks: line goes through triangle

Triangle Mesh (more)

- Object normal
- Normalize cross-product of two sides of the triangle
- Distance from single triangle
- Find barycentric coordinates -- solve a leastsquares problem
- Need to clip to sides of triangle
- Compute distance from that point
- Note: also gives direction to closest point
- Distance (and direction) from mesh
- Compute for all possible triangles, take minimum
- Trick is to find small list of possible triangles with acceleration structure

