Notes

Building implicit surfaces

- Simplest examples: a plane, a sphere
- Can do unions and intersections with min and max
- This works great for isolated particles, but we want a smooth liquid mass when we have lots of particles together
- Not a bumpy union of spheres

Blobbies and Metaballs

- Solution is to add kernel functions together
- Typically use a spline or Gaussian kernel around each particle
- Still may look a little bumpy - can process surface geometry to smooth it out afterwards...

Marching Cubes

- Going back to blobby/metaball implicit surfaces: often need mesh of surface
- Idea of marching cubes (or marching tets):
- Split space up into cells
- Look at implicit surface function at corners of cell
- If there's a zero crossing, estimate where, put a polygon there
- Make sure polygons automatically connect up

Acceleration

- Efficiency of neighbour location
- Rendering implicit surfaces - need to quickly add only the kernel functions that are not zero (avoid $O(n)$ sums!)
- Also useful later for liquid animation and collisions
- Use an acceleration structure
- Background grid or hashtable
- Kd-trees also popular

Back to animation

- The real power of particle systems comes when forces depend on other particles
- Example: connect particles together with springs
- If particles i and j are connected, spring force is

$$
F_{i}=-k\left(\frac{\left\|x_{i}-x_{j}\right\|}{L_{i j}}-1\right) \frac{x_{i}-x_{j}}{\left\|x_{i}-x_{j}\right\|} \quad F_{j}=-F_{i}
$$

- The rest length is L and the spring "stiffness" is k
- The bigger kis, the faster the particles try to snap back to rest length separation
- Simplifies for $\mathrm{L}=0$

Damped springs

- Real springs oscillate less and less
- Motion is "damped"
- Add damping force:

$$
\begin{aligned}
& F_{i}^{\text {danp }}=-D\left[\left.\frac{\left(v_{i}-v_{j}\right)}{L_{i j}} \cdot \frac{x_{i}-x_{j}}{\left\|x_{i}-x_{j}\right\|} \right\rvert\, \frac{x_{i}-x_{j}}{\left\|x_{i}-x_{j}\right\|}\right. \\
& F_{j}^{\text {danp }}=-F_{i}^{\text {danp }}
\end{aligned}
$$

- D is damping parameter
- Note: could incorporate L into D
- Simplified form (less physical...)
$F_{i}^{\text {damp }}=-D\left(v_{i}-v_{j}\right) \quad$ or even $\quad F_{i}^{\text {damp }}=-D v_{i}$

Elastic objects

- Can animate elastic objects by sprinkling particles through them, then connecting them up with a mesh of springs
- Hair - lines of springs
- Cloth - 2D mesh of springs
- Jello - 3D mesh of springs
- With complex models, can be tricky to get the springs laid out right, with the right stiffnesses
- More sophisticated methods like Finite Element Method (FEM) can solve this

Liquids

- Can even animate liquids (water, mud...)
- Instead of fixing which particles are connected, just let nearby particles interact
- If particles are too close, force pushes them apart
- If particles a bit further, force pulls them closer
- If particles even further, no more force
- Controlled by a smooth kernel function
- Related to numerical technique called SPH: smoothed particle hydrodynamics
- With enough particles (and enough tweaking!) can get a nice liquid look
- Render with implicit surface

Noise

- Useful for defining velocity/force fields, particle variations, and much much more (especially shaders)
- Need a smooth random number field
- Several approaches
- Most popular is Perlin noise
- Put a smooth cubic (Hermite) spline patch in every cell of space
- Control points have value o, slope looked up from table by hashing knot coordinates
- You can decide spatial frequency of noise by rescaling grid

Time integration for particles

- Back to the ODE problem, either

$$
\frac{d x_{i}}{d t}=v\left(x_{i}, t\right) \quad \text { or } \quad\left\{\begin{array}{l}
\frac{d x_{i}}{d t}=v_{i} \\
\frac{d v_{i}}{d t}=\frac{1}{m_{i}} F\left(x_{i}, v_{i}, t\right)
\end{array}\right.
$$

- Accuracy, stability, and ease-ofimplementation are main issues
- Obviously Forward Euler and Symplectic Euler are easy to implement - how do they fare in other ways?

Stability

- Do the particles fly off to infinity?
- Particularly a problem with stiff springs
- Can always be fixed with small enough time steps - but expensive!
- Basically the problem is extrapolation:
- From time t we take aim and step off to time $t+\Delta t$
- Called "explicit" methods
- Can turn this into interpolation:
- Solve for future position at $\mathrm{t}+\Delta \mathrm{t}$ that points back to time t
- Called "implicit" methods

Backward Euler

- Simplest implicit method: very stable, not so accurate, can be painful to implement

$$
\mathbf{x}^{\mathbf{n + 1}}=x^{n}+\Delta t v\left(\mathbf{x}^{\mathbf{n + 1}}, t^{n+1}\right)
$$

- Again, can use for both 1st order and 2nd order systems
- Solving the system for $\mathrm{x}^{\mathrm{n}+1}$ often means Newton's method
(linearize as in Gauss-Newton)

Simplified Backward Euler

- Take just one step of Newton, i.e. linearize nonlinear velocity field:

$$
v\left(x^{n+1}\right) \approx v\left(x^{n}\right)+\frac{\partial v\left(x^{n}\right)}{\partial x}\left(x^{n+1}-x^{n}\right)
$$

- Then Backward Euler becomes a linear system:

$$
\begin{aligned}
& x^{n+1}=x^{n}+\Delta t\left[v\left(x^{n}\right)+\frac{\partial v\left(x^{n}\right)}{\partial x}\left(x^{n+1}-x^{n}\right)\right] \\
& \Delta x=\Delta t\left[v\left(x^{n}\right)+\frac{\partial v\left(x^{n}\right)}{\partial x} \Delta x\right] \\
& \left(I-\frac{\partial v}{\partial x}\right) \Delta x=\Delta t v\left(x^{n}\right)
\end{aligned}
$$

