
1

Notes

2

Building implicit surfaces

! Simplest examples: a plane, a sphere
! Can do unions and intersections with

min and max
! This works great for isolated particles,

but we want a smooth liquid mass when
we have lots of particles together
! Not a bumpy union of spheres

3

Blobbies and Metaballs

! Solution is to add kernel functions
together

! Typically use a spline or Gaussian
kernel around each particle

! Still may look a little bumpy - can
process surface geometry to smooth it
out afterwards…

4

Marching Cubes

! Going back to blobby/metaball implicit
surfaces: often need mesh of surface

! Idea of marching cubes (or marching
tets):
! Split space up into cells

! Look at implicit surface function at corners
of cell

! If there’s a zero crossing, estimate where,
put a polygon there

! Make sure polygons automatically connect
up

5

Acceleration

! Efficiency of neighbour location

! Rendering implicit surfaces - need to
quickly add only the kernel functions that
are not zero (avoid O(n) sums!)

! Also useful later for liquid animation and
collisions

! Use an acceleration structure

! Background grid or hashtable

! Kd-trees also popular

6

Back to animation

! The real power of particle systems comes
when forces depend on other particles

! Example: connect particles together with
springs
! If particles i and j are connected, spring force is

! The rest length is L and the spring “stiffness” is k
! The bigger k is, the faster the particles try to snap

back to rest length separation
! Simplifies for L=0

�

Fi = !k
xi ! x j

Lij
!1

"

$ $

%

&

' '

xi ! x j

xi ! x j

Fj = !Fi

7

Damped springs

! Real springs oscillate less and less
! Motion is “damped”
! Add damping force:

! D is damping parameter
! Note: could incorporate L into D

! Simplified form (less physical…)
�

Fi
damp

= !D
vi ! v j()
Lij

"
xi ! x j

xi ! x j

$

%
%

&

'

(
(

xi ! x j

xi ! x j

Fj

damp
= !Fi

damp

�

Fi
damp

= !D vi ! v j() or even Fi
damp

= !Dvi

8

Elastic objects

! Can animate elastic objects by sprinkling
particles through them, then connecting them
up with a mesh of springs
! Hair - lines of springs

! Cloth - 2D mesh of springs

! Jello - 3D mesh of springs

! With complex models, can be tricky to get the
springs laid out right, with the right
stiffnesses
! More sophisticated methods like Finite Element

Method (FEM) can solve this

9

Liquids

! Can even animate liquids (water, mud…)
! Instead of fixing which particles are

connected, just let nearby particles interact
! If particles are too close, force pushes them apart
! If particles a bit further, force pulls them closer
! If particles even further, no more force
! Controlled by a smooth kernel function

! Related to numerical technique called SPH:
smoothed particle hydrodynamics

! With enough particles (and enough tweaking!)
can get a nice liquid look

! Render with implicit surface

10

Noise

! Useful for defining velocity/force fields,
particle variations, and much much more
(especially shaders)

! Need a smooth random number field

! Several approaches

! Most popular is Perlin noise
! Put a smooth cubic (Hermite) spline patch in every

cell of space

! Control points have value 0, slope looked up from
table by hashing knot coordinates

! You can decide spatial frequency of noise by
rescaling grid

11

Time integration for particles

! Back to the ODE problem, either

! Accuracy, stability, and ease-of-
implementation are main issues

! Obviously Forward Euler and Symplectic
Euler are easy to implement - how do they
fare in other ways?

�

dx
i

dt
= v x

i
,t() or

dx
i

dt
= v

i

dv
i

dt
=
1

m
i

F x
i
,v

i
,t()

!

"

$

12

Stability

! Do the particles fly off to infinity?

! Particularly a problem with stiff springs

! Can always be fixed with small enough time
steps - but expensive!

! Basically the problem is extrapolation:

! From time t we take aim and step off to time t+!t

! Called “explicit” methods

! Can turn this into interpolation:

! Solve for future position at t+!t that points back to
time t

! Called “implicit” methods

13

Backward Euler

! Simplest implicit method: very stable,
not so accurate, can be painful to
implement

! Again, can use for both 1st order and 2nd
order systems

! Solving the system for xn+1 often means
Newton’s method
(linearize as in Gauss-Newton)

�

x
n+1

= x
n

+ !t v(x
n+1
,t
n+1
)

14

Simplified Backward Euler

! Take just one step of Newton, i.e. linearize
nonlinear velocity field:

! Then Backward Euler becomes a linear
system:

�

v x
n+1() ! v xn() +

"v x
n()

"x
x
n+1

x
n()

�

x
n+1

= x
n

+ !t v xn() +
"v xn()
"x

x
n+1 # xn()

$

%

&
&

'

(

)
)

!x = !t v xn() +
"v xn()
"x

!x
$

%

&
&

'

(

)
)

I #
"v
"x

*

+
,

-

.
/ !x = !t v xn()

