
1

Notes

! Text:
! Motion Blur A.3

! Particle systems 4.5 (and 4.4.1, 6.6.2…)

! Implicit Surfaces - 4.6

! Classic particle system papers
! W. Reeves, “Particle Systems…”

SIGGRAPH ‘83 [REQUIRED READING]

! K. Sims, “Particle Animation and
Rendering…”, SIGGRAPH ‘90

2

Velocity fields

! Velocity field could be a combination of
pre-designed velocity elements

! E.g. explosions, vortices, …

! Or from “noise”

! Smooth random number field

! See later

! Or from a simulation

! Interpolate velocity from a computed grid

! E.g. smoke simulation

3

Second order motion

! Real particles move due to forces
! Newton’s law F=ma
! Need to specify force F (gravity, collisions, …)
! Divide by particle mass to get acceleration a
! Update velocity v by acceleration
! Update position x by velocity

�

v
i

new
= v

i
+ !t

F(x
i
,v

i
,t)

m
i

x
i

new
= x

i
+ !tv

i

new

4

Time integration

! Really solving ordinary differential equations in time:

! Methods presented before are called “Forward Euler”
and “Symplectic Euler”

! There are better numerical methods

! These are the simplest that can work - but big issue is
stability - more on this later

�

dx
i

dt
= v x

i
,t() or

dx
i

dt
= v

i

dv
i

dt
=
1

m
i

F x
i
,v

i
,t()

!

"

$

5

Basic rendering

! Draw a dot for each particle
! But what do you do with several particles per

pixel?
! Add: models each point emitting (but not

absorbing) light -- good for sparks, fire, …
! More generally, compute depth order, do alpha-

compositing (and worry about shadows etc.)
! Can fit into Reyes very easily

! Anti-aliasing
! Blur edges of particle, make sure blurred to cover

at least a pixel

! Particle with radius: kernel function

6

Motion blur

! One case where you can actually do
exact solution instead of sampling

! Really easy for simple particles

! Instead of a dot, draw a line
(from old position to new position - the
shutter time)

! May involve decrease in alpha

! More accurately, draw a spline curve

! May need to take into account radius as
well…

7

More detailed particle
rendering

! Stick a texture (or even a little movie) on each
particle
! E.g. a noise function

! E.g. a video of real flames

! Draw a little object for each particle
! Need to keep track of orientation as well, unless

spherical

! We’ll get into full-fledged rigid bodies later

! Draw between particles
! curve (hair), surface (cloth)

! Implicit surface wrapped around virtual
particles (e.g. water)

8

Implicit Surface Rendering

! Idea for water, mud, etc: implicit surface
! Write down a function F(x) that implicitly

defines surface
! Where it is above threshhold t we are inside
! Where it is below, we are outside
! Where F(x)=t is the surface

! Ray-tracing implicit surface is pretty easy
! For ray O+sD solve F(O+sD)=t

! Could use Bisection or Secant search to find s

! Get surface normal from !F

! Other rendering methods trickier…
! E.g. for Reyes need to turn into a mesh or

subdivision surface: “Marching Cubes”

9

Building implicit surfaces

! Simplest examples: a plane, a sphere
! Can do unions and intersections with

min and max
! This works great for isolated particles,

but we want a smooth liquid mass when
we have lots of particles together
! Not a bumpy union of spheres

10

Blobbies and Metaballs

! Solution is to add kernel functions
together

! Typically use a spline or Gaussian
kernel around each particle

! Still may look a little bumpy - can
process surface geometry to smooth it
out afterwards…

11

Marching Cubes

! Going back to blobby/metaball implicit
surfaces: often need mesh of surface

! Idea of marching cubes (or marching
tets):
! Split space up into cells

! Look at implicit surface function at corners
of cell

! If there’s a zero crossing, estimate where,
put a polygon there

! Make sure polygons automatically connect
up

12

Acceleration

! Efficiency of neighbour location

! Rendering implicit surfaces - need to
quickly add only the kernel functions that
are not zero (avoid O(n) sums!)

! Also useful later for liquid animation and
collisions

! Use an acceleration structure

! Background grid or hashtable

! Kd-trees also popular

13

Back to animation

! The real power of particle systems comes
when forces depend on other particles

! Example: connect particles together with
springs
! If particles i and j are connected, spring force is

! The rest length is L and the spring “stiffness” is k
! The bigger k is, the faster the particles try to snap

back to rest length separation
! Simplifies for L=0

�

Fi = !k
xi ! x j

Lij
!1

"

$ $

%

&

' '

xi ! x j

xi ! x j

Fj = !Fi

14

Damped springs

! Real springs oscillate less and less
! Motion is “damped”
! Add damping force:

! D is damping parameter
! Note: could incorporate L into D

! Simplified form (less physical…)
�

Fi
damp

= !D
vi ! v j()
Lij

"
xi ! x j

xi ! x j

$

%
%

&

'

(
(

xi ! x j

xi ! x j

Fj

damp
= !Fi

damp

�

Fi
damp

= !D vi ! v j() or even Fi
damp

= !Dvi

15

Elastic objects

! Can animate elastic objects by sprinkling
particles through them, then connecting them
up with a mesh of springs
! Hair - lines of springs

! Cloth - 2D mesh of springs

! Jello - 3D mesh of springs

! With complex models, can be tricky to get the
springs laid out right, with the right
stiffnesses
! More sophisticated methods like Finite Element

Method (FEM) can solve this

16

Liquids

! Can even animate liquids (water, mud…)
! Instead of fixing which particles are

connected, just let nearby particles interact
! If particles are too close, force pushes them apart
! If particles a bit further, force pulls them closer
! If particles even further, no more force
! Controlled by a smooth kernel function

! Related to numerical technique called SPH:
smoothed particle hydrodynamics

! With enough particles (and enough tweaking!)
can get a nice liquid look

! Render with implicit surface

17

Noise

! Useful for defining velocity/force fields,
particle variations, and much much more
(especially shaders)

! Need a smooth random number field

! Several approaches

! Most popular is Perlin noise
! Put a smooth cubic (Hermite) spline patch in every

cell of space

! Control points have value 0, slope looked up from
table by hashing knot coordinates

! You can decide spatial frequency of noise by
rescaling grid

