Notes

- Demetri Terzopoulos talk:

Thursday, 4pm
Dempster 310

Back to Rigid Bodies

- Motivation - particle simulation doesn't cut it for large rigid objects
- Especially useful for action in games and film (e.g. car dynamics, crashes, explosions)
- To recap:
- Split our rigid body into chunks of matter, we look at each chunk as a simple particle
- Rigid constraint: distances between particles have to stay constant
- Thus position of a particle is a rotation + translation from "object space" into "world space"
- We want to figure out what's happening with velocities, forces, ...

Rigid Motion

- Recall we map from object space position p_{i} of particle i to world space position x_{i} with

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{R}(\mathrm{t}) \mathrm{p}_{\mathrm{i}}+\mathrm{X}(\mathrm{t})
$$

- Differentiate map w.r.t. time (using dot notation):

$$
v_{i}=\dot{R} p_{i}+V
$$

- Invert map for $\mathrm{p}_{\mathrm{i}}: \quad p_{i}=R^{T}\left(x_{i}-X\right)$
- Thus: $v_{i}=\dot{R} R^{T}\left(x_{i}-X\right)+V$
- 1st term: rotation, 2nd term: translation
- Let's simplify the rotation

Skew-Symmetry

- Differentiate $\mathrm{RR}^{\mathrm{T}}=\delta$ w.r.t. time:

$$
\dot{R} R^{T}+R \dot{R}^{T}=0 \Rightarrow \dot{R} R^{T}=-\left(\dot{R} R^{T}\right)^{T}
$$

* Skew-symmetric! Thus can write as:

$$
\dot{R} R^{T}=\left(\begin{array}{ccc}
0 & -\omega_{2} & \omega_{1} \\
\omega_{2} & 0 & -\omega_{0} \\
-\omega_{1} & \omega_{0} & 0
\end{array}\right)
$$

* Call this matrix ω^{*} (built from a vector ω)

$$
\dot{R} R^{T}=\omega^{*} \Rightarrow \dot{R}=\omega^{*} R
$$

The cross-product matrix

- Note that:

$$
\omega^{*} x=\left(\begin{array}{ccc}
0 & -\omega_{2} & \omega_{1} \\
\omega_{2} & 0 & -\omega_{0} \\
-\omega_{1} & \omega_{0} & 0
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{c}
\omega_{1} x_{2}-\omega_{2} x_{1} \\
\omega_{2} x_{0}-\omega_{0} x_{2} \\
\omega_{0} x_{1}-\omega_{1} x_{0}
\end{array}\right)=\omega \times x
$$

- So we have:

$$
v_{i}=\omega \times\left(x_{i}-X\right)+V
$$

* ω is the angular velocity of the object

Force

- Take another time derivative to get acceleration:

$$
a_{i}=\dot{v}_{i}=\ddot{R} p_{i}+A
$$

- Use $\mathrm{F}=\mathrm{ma}$, sum up net force on system:

$$
\begin{aligned}
\sum_{i} F_{i}=\sum_{i} m_{i} a_{i} & =\sum_{i} m_{i}\left(\ddot{R} p_{i}+A\right) \\
& =\ddot{R} \sum_{i} m_{i} p_{i}+A \sum_{i} m_{i}
\end{aligned}
$$

- Let the total mass be $M=\sum_{i} m_{i}$
- How to simplify the other term?

Angular velocity

- Recall:
- $|\omega|$ is the speed of rotation (radians per second)
$\leftrightarrow \omega$ points along the axis of rotation (which in this case passes through the point X)
』Convince yourself this makes sense with the properties of the crossproduct

Centre of Mass

- Let's pick a new object space position:

$$
p_{i}^{n e w}=p_{i}-\frac{\sum_{j} m_{j} p_{j}}{M}
$$

- The mass-weighted average of the positions is the centre of mass
- We translated the centre of mass (in object space) to the point o
- Now:

$$
\sum_{i} m_{i} p_{i}=0
$$

Force equation

- So now, assuming we've set up object space right (centre of mass at o), $\mathrm{F}=\mathrm{MA}$
- If there are no external forces, have $\mathrm{F}=0$
- Internal forces must balance out, opposite and equal
- Thus $\mathrm{A}=\mathrm{o}$, thus $\mathrm{V}=$ constant
- If there are external forces, can integrate position of object just like a regular particle!

What about R?

- How does orientation change?
- Think about internal forces keeping the particles in the rigid configuration
- Conceptual model: very stiff spring between every pair of particles, maintaining the rest length
- So $F_{i}=\sum_{j} f_{i j}$ where f_{ij} is force on i due to j
- Of course $\mathrm{f}_{\mathrm{ij}}+\mathrm{f}_{\mathrm{ji}}=\mathrm{o}$
- Also: f_{ij} is in the direction of $\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}$
- Thus $\left(x_{i}-x_{j}\right) \times f_{i j}=0$

Net Torque

- Play around: $\left(\left(x_{i}-X\right)-\left(x_{j}-X\right)\right) \times f_{i j}=0$

$$
\begin{aligned}
\left(x_{i}-X\right) \times f_{i j} & =\left(x_{j}-X\right) \times f_{i j} \\
& =-\left(x_{j}-X\right) \times f_{j i}
\end{aligned}
$$

- Sum both sides (ivun iun nel nuice)

$$
\begin{aligned}
\sum_{i, j}\left(x_{i}-X\right) \times f_{i j} & =-\sum_{i, j}\left(x_{j}-X\right) \times f_{j i} \\
\sum_{i}\left(x_{i}-X\right) \times F_{i} & =-\sum_{j}\left(x_{j}-X\right) \times F_{j} \\
& =0
\end{aligned}
$$

- The expression we just computed=o is the net torque on the object

Torque

- The torque of a force applied to a point is

$$
\tau_{i}=\left(x_{i}-X\right) \times F_{i}
$$

- The net torque due to internal forces is o
- [geometry of torque: at CM, with opposite equal force elsewhere]
- Torque obviously has something to do with rotation
- How do we get formula for change in angular velocity?

Angular Momentum

- Use $\mathrm{F}=\mathrm{ma}$ in definition of torque:

$$
\begin{aligned}
\tau_{i} & =\left(x_{i}-X\right) \times m_{i} a_{i} \\
& =\frac{d}{d t}\left[m_{i}\left(x_{i}-X\right) \times v_{i}\right]
\end{aligned}
$$

- force=rate of change of linear momentum, torque=rate of change of angular momentum
- The total angular momentum of the object is

$$
\begin{aligned}
L & =\sum_{i} m_{i}\left(x_{i}-X\right) \times v_{i} \\
& =\sum_{i} m_{i}\left(x_{i}-X\right) \times\left(v_{i}-V\right)
\end{aligned}
$$

Getting to ω

- Recall $v_{i}-V=\omega \times\left(x_{i}-X\right)$
- Plug this into angular momentum:

$$
\begin{aligned}
L & =\sum_{i} m_{i}\left(x_{i}-X\right) \times\left(\omega \times\left(x_{i}-X\right)\right) \\
& =-\sum_{i} m_{i}\left(x_{i}-X\right) \times\left(\left(x_{i}-X\right) \times \omega\right) \\
& =-\sum_{i} m_{i}\left(x_{i}-X\right)^{*}\left(x_{i}-X\right)^{*} \omega \\
& =\underbrace{\left(\sum_{i} m_{i}\left(x_{i}-X\right)^{* T}\left(x_{i}-X\right)^{*}\right)}_{I(t)} \omega
\end{aligned}
$$

Equations of Motion

$$
\begin{array}{rlrl}
\frac{d}{d t} V=F / M & \frac{d}{d t} L & =\mathrm{T} \\
\frac{d}{d t} X=V & \omega & =I(t)^{-1} L \\
& & \frac{d}{d t} R & =\omega^{*} R
\end{array}
$$

In the absence of external forces $\mathrm{F}=0, \mathrm{~T}=0$

Reminder

- Before going on:
- Remember that this all boils down to particles
- Mass, position, velocity, (linear) momentum, force are fundamental
- Inertia tensor, orientation, angular velocity, angular momentum, torque are just abstractions
- Don't get too puzzled about interpretation of torque for example: it's just a mathematical convenience

