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Notes

! Demetri Terzopoulos talk:
Thursday, 4pm
Dempster 310
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Back to Rigid Bodies

! Motivation - particle simulation doesn’t cut it
for large rigid objects
! Especially useful for action in games and film (e.g.

car dynamics, crashes, explosions)

! To recap:
! Split our rigid body into chunks of matter, we look

at each chunk as a simple particle

! Rigid constraint: distances between particles have
to stay constant

! Thus position of a particle is a rotation +
translation from “object space” into “world space”

! We want to figure out what’s happening with
velocities, forces, …
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Rigid Motion

! Recall we map from object space position pi of
particle i to world space position xi with
                       xi=R(t)pi+X(t)

! Differentiate map w.r.t. time (using dot
notation):

! Invert map for pi:

! Thus:

! 1st term: rotation,  2nd term: translation
! Let’s simplify the rotation
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Skew-Symmetry

! Differentiate RRT=! w.r.t. time:

" Skew-symmetric! Thus can write as:

" Call this matrix #!    (built from a vector #)
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The cross-product matrix

! Note that:

! So we have:

" # is the angular velocity of the object� 
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Angular velocity

! Recall:

! |#| is the speed of rotation (radians

per second)

"# points along the axis of rotation

(which in this case passes through the
point X)

"Convince yourself this makes sense
with the properties of the cross-
product
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Force

! Take another time derivative to get
acceleration:

! Use F=ma, sum up net force on system:

! Let the total mass be

! How to simplify the other term?

� 

ai = ˙ v i = ˙ ̇ R pi + A
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Centre of Mass

! Let’s pick a new object space position:

! The mass-weighted average of the positions
is the centre of mass

! We translated the centre of mass (in object
space) to the point 0

! Now:
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Force equation

! So now, assuming we’ve set up object
space right (centre of mass at 0), F=MA

! If there are no external forces, have F=0

! Internal forces must balance out, opposite
and equal

! Thus A=0, thus V=constant

! If there are external forces, can
integrate position of object just like a
regular particle!
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What about R?

! How does orientation change?

! Think about internal forces keeping the
particles in the rigid configuration
! Conceptual model: very stiff spring between every

pair of particles, maintaining the rest length

! So                       where fij is force on i due to j

! Of course fij+fji=0

! Also: fij is in the direction of xi-xj

! Thus
� 

Fi = fij
j

!
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xi ! x j( ) " fij = 0
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Net Torque

! Play around:

! Sum both sides (look for net force)

! The expression we just computed=0 is the net
torque on the object
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Torque

! The torque of a force applied to a point is

! The net torque due to internal forces is 0

! [geometry of torque: at CM, with opposite
equal force elsewhere]

! Torque obviously has something to do with
rotation

! How do we get formula for change in angular
velocity?
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Angular Momentum

! Use F=ma in definition of torque:

! force=rate of change of linear momentum,
torque=rate of change of angular momentum

! The total angular momentum of the object is
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Getting to #

! Recall

! Plug this into angular momentum:
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Inertia Tensor

! I(t) is the inertia tensor

! Kind of like “angular mass”

! Linear momentum is mv

! Angular momentum is L=I(t)#

"Or we can go the other way: #=I(t)-1L
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Equations of Motion
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d

dt
V = F

M
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In the absence of external forces F=0, T=0
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Reminder

! Before going on:

! Remember that this all boils down to
particles
! Mass, position, velocity, (linear) momentum, force

are fundamental

! Inertia tensor, orientation, angular velocity,
angular momentum, torque are just abstractions

! Don’t get too puzzled about interpretation of
torque for example: it’s just a mathematical
convenience


