
1

Notes

! Assignment 2 is out
! Flocking references

! Reynolds, “Flocks, Herds, and Schools…”,
SIGGRAPH’87

! Tu and Terzopoulos, “Artificial Fishes…”,
SIGGRAPH’94

2

Flocking Behaviour

! Animating large groups of organisms is
painful to do by scripting each member
! Think flocks of birds, schools of fish, crowds of

people, armies, …

! Not just the complexity of each one’s motion, but
making sure they all are consistent with each other

! Instead use a particle system approach
! Each particle represents one member of the flock

(“boid”)

! Rules of motion are somewhat more complex

! Ultimately best to replace “particle” by “agent”,
and look at multi-agent systems (AI/Robotics)

3

State

! Need position x, velocity v
! But we might ignore true notion of mass and

forces (like gravity) for convenience
! For enhanced realism, accurately model physical forces,

but this makes it much harder to make the boids do what
you want

! See Tu and Terzopoulos, “Artificial Fishes…”,
SIGGRAPH’94

! Also an orientation
! For now, think of 3 Euler angles (e.g. pitch,

heading, roll)

! We will soon get more sophisticated

! Perhaps joint angles or more
! To describe the external traits

4

Internal State

! Also want the state of the agent’s mind

! Might be empty - purely reactive creatures

! Reynolds’ paper

! Simple quantities e.g. hunger

! Tu & Terzopoulos

! No limit on complexity



5

Perception

! One of the critical additions to the base
particle system is perception

! Agents get a local view of the world,
depending on their position and orientation
(and…)

! Maybe abstracted to nearest neighbours’
states plus collision geometry ahead
! You probably don’t want to do full renderings for

each agent, then solve the computer vision
problem

! Can also put animator controls in - e.g. agents
know where goal position is

6

Behavioural Rules

! These could be anything from AI

! Let’s look at simpler examples, from Reynolds
first paper
! Each rule produces a desired acceleration from the

current state+perception

! Collision Avoidance: steer away from others you
are about to collide with

! Velocity Matching: try to match velocity vector of
nearby members

! Flock Centering: move to middle (centroid) of
nearby members

! Collision Avoidance 2: steer away from collision
geometry in scene (see it far ahead)

! Migratory Urge: animator control

7

Motion Rules

! Need to somehow combine acceleration
requests from subsystems into a coherent
control
! Averaging doesn’t work well

! Assigning priorities

! Perhaps with a memory to avoid dithering

! Apply limits to final acceleration decision (e.g.
a maximum, or true physics…)

! Integrate into velocity etc. maybe with limits
here too (max velocity etc.)

! Secondary motion may be important
! E.g. banking into a turn

8

More Details

! Let’s look at behavioural rules in more detail

! Collision Avoidance - if another object dead
ahead and too close, turn in some direction
! A last ditch, very high priority, emergence

procedure

! Velocity Matching
! Accelerate current velocity towards average of

neighbours’ velocities, weighted by proximity
! Inverse power laws (square, cube, …)

! Usual mode of avoiding running into others - if
you move with the flow, you won’t collide - thus
should be relatively high priority



9

More Details…

! Flock Centering
! Accelerate so position ends up at average of

neighbours’ positions, weighted by proximity

! Just like velocity matching, but for position

! Keeps flock together, but only locally (flock may
still separate)

! Lower priority

! Avoiding scene geometry
! Simple method: put repulsion forces around

objects
! Can get weird effects for dead-on collisions

! Better: do ray intersection (current position +
heading) with scene to find dangerous object. Find
shortest direction to silhouette for avoidance.

10

Control

! The main problem with any system that
automates lots for the animator
! To make them do something, either intense

amount of parameter tweaking and luck, or use
manual override (which may violate other aspects
of behaviour, requiring more overrides…)

! Can add additional acceleration requests from
animation script (“migratory urges”, goal
directions or positions)

! Follow-the-leader approach - script one, let
the others try to follow

! Add virtual geometry to guide agents

11

Optimized Control

! Common approach to many controlled
motion problems: phrase it as an
optimization problem
! Find solution which satisfies control constraints

(e.g. center of flock at position x at time t) with
least violation of behavioural rules

! Or find solution which satisfies behavioural
constraints and comes closest to user’s objective
(note: need some variability, at least in initial
conditions, probably also in “random” behaviour)

! Example reference:
! Anderson, McDaniel, and Chenney, “Constrained

Animation of Flocks”, Symposium on Computer
Animation 2003

12

Rigid Bodies

! We know how to do physics with simple
point masses

! What about larger objects?
! We talked a little about mass-spring

models of deformable objects

! What about larger and basically rigid
objects?
! Most of the world around us

! NOT a good idea to simply model with stiff
springs



13

Rigid Bodies

! I’ll introduce them from a particle perspective
! Easy to get lost in abstract notions

! Particles are fundamental

! Discretize an object into small point masses
! xi, vi, mi

! Assume object doesn’t change shape (doesn’t
deform)
! What does that mean for the motion of the

particles? How do we describe it, solve for it?

14

World Space vs. Object Space

! World space: where the particles actually are
now
! This is where we will look at x, v, and almost every

other quantity

! Object space: imaginary “reference” place for
the particles
! Label the object space position pi

! Does not change as the object moves - things we
compute in object space stay constant

! We can define it arbitrarily

15

Mapping

! The map from pi to xi(t) cannot change
the shape
! The distance between any two particles

never changes

! Thus map has to be xi(t)=R(t)pi+X(t)

! R(t) is an orthogonal 3x3 matrix: RRT=!
! The orientation (rotation) of the object

! X(t) is a vector
! The “location” of the object


