= Reference

» Witkin and Baraff, “Physically Based
Modelling” course, SIGGRAPH 2001

= Link on the course website

True Collisions

» Turn attention from repulsions for a while

» Model collision as a discrete event - a bounce
» Input: incoming velocity, object normal
= Qutput: outgoing velocity

Need some idea of how “elastic” the collision
» Fully elastic - reflection
= Fully inelastic - sticks (or slides)

Let’s ignore friction for now

Let’s also ignore how to incorporate it into
algorithm for moving particles for now

Newtonian Collisions

» Say object is stationary, normal at point of impact is n
» Incoming particle velocity is v
» Split v into normal and tangential components:

Vy=Vv-n

Vp =V =V

» Newtonian model for outgoing velocity

» Unchanged tangential component v.. y
. new 0
= New normal componentis Vy =—€Vy
» The “coefficient of restitution” is €, ranging from

o (inelastic) to 1 (perfectly elastic)

= The final outeoine velocitv is
new old

__..old
A% —VT —8VN n

Relative velocity in collisions

» What if particle hits a moving object?

= Now process collision in terms of
relative velocity
" Vrel™ Vparticle ™ Vobject
» Take normal and tangential components of
relative velocity

» Reflect normal part appropriately to get
NeW V.

» Then new Vpamde=vobject+(new Viel)

Movable Objects

= Before assumed m ;¢ >> My, ice
» Then effect on object is negligible
= If not, still calculate new v, as above
= But change v, and v, With “impulses”
» Unknown impulse I (force * time) applied to
particle and opposite -I to object
= New velocities: Vprice =V paricte %,,

new
object

particle

1% =V ..
object m
object

» New relative velocity in terms of I gives
equation to solve for I:

v:leelw = vrel + / + /
mparticle mobject

Friction
» Friction slows down the relative tangential
velocity
» Causes a tangential force F that opposes
sliding, according to
» Magnitude of normal force Fy pressing on particle
» And friction coefficient u

= Basic Coulomb law:

= If kinetic friction (v,q#0) then |F|=u|Fy| and is
in a direction most opposing sliding
= If static friction (vy,.4=0) then |F;|<p|Fy|

Implementing Friction

= Gets really messy to directly use friction forces (really
hard to get true static friction!)
» Instead integrate into relative velocity update
» Integrating normal and friction force over the
collision time and dividing by mass gives Coulomb
friction in terms of velocity changes:
= Static friction: |Av|<p|Avy| (and then v;=0)
= Kinetic friction: Avy=-u|Avy| v/ | vyl

= Assuming direction of friction force is always opposing the
initial tangential velocity

» Combine into one formula for new relative tangential

velocity:
after __ _ .U‘AVN‘ before
v = maX{O,l ‘v seore] M7

T

Collisions so far

= We now have a black box collision processing
routine

= Input:
= particle velocity before
= (maybe object velocity and masses)
= object normal
= parameters € and p

» Intermediate:

= Relative velocity, split into normal and tangential
components

= Qutput:
= new particle velocity
= (maybe new object velocity)

» How do we use this in time integration?

Simple collision algorithm
= After each time step, check if particles
collided with objects

» If so, change velocities according to routine
» Fails catastrophically for more
interesting cases

» New velocity may or may not get particle
out next time step - is that another
collision?

» Is it ok to have particles inside (or on the
wrong side of) objects any time?

Backing up time
» Can avoid some problems by processing
collision when it happens, not after the fact
» Figure out when collision happens (or at least
get close to time of collision, but not later
than)
= Apply velocity update then

» Potential problems:
» Hard to figure out time

* Could involve a lot of work per time step
(unpredictable)

Simultaneous collision
resolution

» Ignore exact timing and order of
collisions during a time step

= Begin with old position x°d
» New candidate position x®e¥

= If collision occurred, process with
vave=(x"eW-x) /At to get new post-
collision velocity vafter

= Then change x"®" to xafter=xold+ At vafter

= Jterate until no collisions remain

Notes on collision resolution
» This works really well for inelastic
collisions
= Can use a large At: separate collision
processing from particle physics
» Can take many small steps to from x°! to
x"ew if stability demands it
= Problems arise with elastic collisions
= May not converge

» Bouncing block problem: a block won’t
come to rest on the floor

Elastic collision resolution

Start with x°ld and veld
Advance to xnew

If collision, apply elastic collision law to vold to
get v2

Take x2=xneW+At (v2-vold) or reintegrate from
x4 v2 if you can afford it

» Repeat elastic step a few times if you want, and
there are still collisions with x>

If still collision, apply INELASTIC collision
law to vave=(x2-x°1d) /At to get vafter

Change x2 to xafter=xold At vafter
Repeat as needed

One last problem

Due to round-off error, or pathological
geometry, may still go into a long loop
resolving collisions

So cut loop off after a small number of
iterations
Failsafe: take vafter=0, xnew=xold

» May look weird, still could have issues for moving

objects especially

Last resort: accept the penetration, apply a
repulsion force to eventually move the
particle out from the object(s)

