
1

Notes

! Reference

! Witkin and Baraff, “Physically Based
Modelling” course, SIGGRAPH 2001

! Link on the course website

2

True Collisions

! Turn attention from repulsions for a while

! Model collision as a discrete event - a bounce

! Input: incoming velocity, object normal

! Output: outgoing velocity

! Need some idea of how “elastic” the collision

! Fully elastic - reflection

! Fully inelastic - sticks (or slides)

! Let’s ignore friction for now

! Let’s also ignore how to incorporate it into
algorithm for moving particles for now

3

Newtonian Collisions

! Say object is stationary, normal at point of impact is n

! Incoming particle velocity is v

! Split v into normal and tangential components:

! Newtonian model for outgoing velocity
! Unchanged tangential component vT

! New normal component is

! The “coefficient of restitution” is !, ranging from
0 (inelastic) to 1 (perfectly elastic)

! The final outgoing velocity is

�

v
N

= v ! n

v
T

= v " v
N
n

�

v
N

new
= !"v

N

old

�

v
new

= v
T

old
!"v

N

old
n

4

Relative velocity in collisions

! What if particle hits a moving object?

! Now process collision in terms of
relative velocity

! vrel=vparticle-vobject

! Take normal and tangential components of
relative velocity

! Reflect normal part appropriately to get
new vrel

! Then new vparticle=vobject+(new vrel)

5

Movable Objects

! Before assumed mobject >> mparticle

! Then effect on object is negligible

! If not, still calculate new vrel as above

! But change vobject and vparticle with “impulses”

! Unknown impulse I (force * time) applied to
particle and opposite -I to object

! New velocities:

! New relative velocity in terms of I gives
equation to solve for I:

�

vparticle
new

= vparticle + I
mparticle

vobject
new

= vobject !
I
mobject

�

vrel
new

= vrel + 1
mparticle

+ 1
mobject

!

"

$

%
& I

6

Friction

! Friction slows down the relative tangential
velocity

! Causes a tangential force FT that opposes
sliding, according to

! Magnitude of normal force FN pressing on particle

! And friction coefficient µ

! Basic Coulomb law:

! If kinetic friction (vTrel!0) then |FT|=µ|FN| and is

in a direction most opposing sliding

! If static friction (vTrel=0) then |FT|"µ|FN|

7

Implementing Friction

! Gets really messy to directly use friction forces (really
hard to get true static friction!)

! Instead integrate into relative velocity update

! Integrating normal and friction force over the
collision time and dividing by mass gives Coulomb
friction in terms of velocity changes:
! Static friction: |#vT|"µ|#vN| (and then vT=0)

! Kinetic friction: #vT=-µ|#vN| vT/|vT|

! Assuming direction of friction force is always opposing the
initial tangential velocity

! Combine into one formula for new relative tangential
velocity:

�

vT
after

=max 0,1!
µ"vN
vT
before

$

%
%

&

'

(
(
vT
before

8

Collisions so far

! We now have a black box collision processing
routine
! Input:

! particle velocity before

! (maybe object velocity and masses)

! object normal

! parameters ! and µ

! Intermediate:
! Relative velocity, split into normal and tangential

components

! Output:
! new particle velocity

! (maybe new object velocity)

! How do we use this in time integration?

9

Simple collision algorithm

! After each time step, check if particles
collided with objects

! If so, change velocities according to routine

! Fails catastrophically for more
interesting cases

! New velocity may or may not get particle
out next time step - is that another
collision?

! Is it ok to have particles inside (or on the
wrong side of) objects any time?

10

Backing up time

! Can avoid some problems by processing
collision when it happens, not after the fact

! Figure out when collision happens (or at least
get close to time of collision, but not later
than)

! Apply velocity update then

! Potential problems:

! Hard to figure out time

! Could involve a lot of work per time step
(unpredictable)

11

Simultaneous collision
resolution

! Ignore exact timing and order of
collisions during a time step

! Begin with old position xold

! New candidate position xnew

! If collision occurred, process with
vavg=(xnew-x)/#t to get new post-
collision velocity vafter

! Then change xnew to xafter=xold+#t vafter

! Iterate until no collisions remain

12

Notes on collision resolution

! This works really well for inelastic
collisions

! Can use a large #t: separate collision
processing from particle physics
! Can take many small steps to from xold to

xnew if stability demands it

! Problems arise with elastic collisions
! May not converge

! Bouncing block problem: a block won’t
come to rest on the floor

13

Elastic collision resolution

! Start with xold and vold

! Advance to xnew

! If collision, apply elastic collision law to vold to
get v2

! Take x2=xnew+#t (v2-vold) or reintegrate from
xold, v2 if you can afford it
! Repeat elastic step a few times if you want, and

there are still collisions with x2

! If still collision, apply INELASTIC collision
law to vavg=(x2-xold)/#t to get vafter

! Change x2 to xafter=xold+#t vafter

! Repeat as needed

14

One last problem

! Due to round-off error, or pathological
geometry, may still go into a long loop
resolving collisions

! So cut loop off after a small number of
iterations

! Failsafe: take vafter=0, xnew=xold

! May look weird, still could have issues for moving
objects especially

! Last resort: accept the penetration, apply a
repulsion force to eventually move the
particle out from the object(s)

