
1

Notes

2

Triangle intersection

! Many, many ways to do this

! Most robust (and one of the fastest) is to do it
based on determinants
! For vectors a,b,c define

! Det(a,b,c)=±6 volume(tet(a,b,c)), the signed
volume of the tetrahedron spanned by edges a,b,c
from a common point

! Sign flips when tetrahedron reflected, or
alternatively from right-hand-rule on a!b•c

! Triangle intersection boils down to
! 2 sign checks: segment crosses plane

! 3 sign checks: line goes through triangle

�

det(a,b,c) =

ax ay az
bx by bz
cx cy cz

= a ! b " c()

3

Triangle Mesh (more)

! Object normal
! Normalize cross-product of two sides of the

triangle

! Distance from single triangle
! Find barycentric coordinates -- solve a least-

squares problem

! Need to clip to sides of triangle

! Compute distance from that point

! Note: also gives direction to closest point

! Distance (and direction) from mesh
! Compute for all possible triangles, take minimum

! Trick is to find small list of possible triangles with
acceleration structure

4

Implicit Surface

! Simple function, metaballs, or interpolated
from 3d grid (“level set”)
! Recall - for metaballs need acceleration

! Particle inside: f(x)<0

! Trajectory cross:
! Just like ray-tracing - use secant method

! Object normal: "f/|"f |

! Distance from surface:
! If f() is signed distance, then trivial

! Otherwise, painful, but f() might be good enough
for application

5

Back to particle collisions

! So now we can represent other geometry, how
do we do a repulsion velocity field?
! v(x)=f(distance(x)) * n(x)

! n(x) is the outward direction (=normal on surface)

! f is some decreasing function that drops towards
zero far away
! Exponential f(d)=e-k*d

! Or linear drop, truncated to zero: f(d)=max(0,m-k*d)

! Or more complicated

! Outward direction is plus/minus direction to
closest point

! Aside: useful for more than just collisions -
e.g. fire particles streaming out of an object

6

Force-based repulsions

! Can do exactly the same trick for force-
based motion
! Add repulsion field to F(x)

! Simple, often works, but there are
sometimes problems
! What are you trying to model?

! Robustness - high velocity impacts can
penetrate arbitrarily far
! High velocity impacts may go straight through

thin objects

! How much of a rebound do you want?

7

Damped repulsions

! Think of repulsion force as a generalized
spring

! Add spring damping:

! D is some parameter you set

! n(x) is the outward direction again

�

Fdamp = !D v " n(x)()n(x)

8

Aside: springs and damping

! How do you come up with reasonable
values for spring constants and
damping constants?
! And how do you pick good step sizes for

differential equation solver (Forward Euler
etc.)

! Look at 1D simplified model
! Ma=F=-Kx-Dv

! M is the mass, K is like a spring stiffness, D
is the damping parameter

! Solve it analytically

9

Critical Damping

! Three cases:
! Underdamped (D2-4MK<0)

! Oscillation with frequency

! Characteristic time:

! Exponentially decays at rate

! Characteristic time:

! Overdamped (D2-4MK>0)
! No continued oscillation

! Exponentially decays at rates

! Characteristic times:

! Critically damped (D2-4MK=0)
! No continued oscillation

! Fastest decay possible at rate

! Characteristic time:

�

D = 2 MK

�

r = !D (2M)

�

t ~ 2M D

�

r ~ !K D, !D M

�

t ~ D K , M D

�

! ~
1

2"
K M

�

t ~ 2! M K

�

r = !D (2M)

�

t ~ 2M D

10

Numerical time steps

! Should be proportional to minimum
characteristic time
! Implicit methods like Backwards Euler actually let

you take larger steps with stability, but wipe out all
hope of accuracy for things with small
characteristic time

! For nonlinear multi-dimensional forces, what
are K and D?
! Estimate them by figuring out what is the fastest

|F| can change if you modify x or v respectively

! This is all very approximate, so don’t get hung up
on getting the “right” answer

! Will ultimately need a fudge factor anyhow (from
experiments)

11

True Collisions

! Turn attention from repulsions for a while

! Model collision as a discrete event - a bounce

! Input: incoming velocity, object normal

! Output: outgoing velocity

! Need some idea of how “elastic” the collision

! Fully elastic - reflection

! Fully inelastic - sticks (or slides)

! Let’s ignore friction for now

! Let’s also ignore how to incorporate it into
algorithm for moving particles for now

12

Newtonian Collisions

! Say object is stationary, normal at point of impact is n

! Incoming particle velocity is v

! Split v into normal and tangential components:

! Newtonian model for outgoing velocity
! Unchanged tangential component vT

! New normal component is

! The “coefficient of restitution” is #, ranging from
0 (inelastic) to 1 (perfectly elastic)

! The final outgoing velocity is

�

v
N

= v ! n

v
T

= v " v
N
n

�

v
N

new
= !"v

N

old

�

v
new

= v
T

old
!"v

N

old
n

13

Relative velocity in collisions

! What if particle hits a moving object?

! Now process collision in terms of
relative velocity

! vrel=vparticle-vobject

! Take normal and tangential components of
relative velocity

! Reflect normal part appropriately to get
new vrel

! Then new vparticle=vobject+(new vrel)

