Notes

Triangle mesh

- For any decent size, need to use an acceleration structure
- Could use background (hash-)grid, octree, kd-tree
- Also can use bounding volume (BV) hierarchy
- Spheres, axis-aligned bounding boxes, oriented bounding boxes, polytopes, ...
- More exotic structures exist...
- Particle inside (closed mesh):
- Shoot a ray out to infinity, count the number of crossings
- Trajectory cross (stationary mesh):
- For each candidate triangle (from acceleration) check a sequence of determinants

Heightfields

- Especially good for terrain - just need a 2 d array of heights (maybe stored as an image)
- Displacement map from a plane
- Split up plane into triangles
- Particle inside:
- Figure out which triangle (x, y) belongs to, check z against equation of triangle's plane
- Trajectory cross (stationary heightfield):
- Check all triangles along path (use 2 d line-drawing algorithm to figure out which cells to check)
- Object normal: get from triangle
- Distance etc.: not so easy, but vertical distance easv for shallow heightfields

Triangle intersection

- Many, many ways to do this
- Most robust (and one of the fastest) is to do it based on determinants
- For vectors a,b,c define $\operatorname{det}(a, b, c)=\begin{array}{lll}b_{x} & b_{y} & b_{z} \\ c_{x} & c_{z} & c^{2}\end{array} \quad \quad(=a \times b \cdot c)$

$$
\left.\begin{array}{ccc}
c_{x} & c_{y} & c_{z}
\end{array} \right\rvert\,
$$

- $\operatorname{Det}(\mathrm{a}, \mathrm{b}, \mathrm{c})= \pm 6$ volume $(\operatorname{tet}(\mathrm{a}, \mathrm{b}, \mathrm{c}))$, the signed volume of the tetrahedron spanned by edges a, b, c from a common point
- Sign flips when tetrahedron reflected, or alternatively from right-hand-rule on $\mathrm{a} \times \mathrm{b} \cdot \mathrm{c}$
- Triangle intersection boils down to
- 2 sign checks: segment crosses plane
- 3 sign checks: line goes through triangle

Triangle Mesh (more)

- Object normal
- Normalize cross-product of two sides of the triangle
- Distance from single triangle
- Find barycentric coordinates -- solve a leastsquares problem
- Need to clip to sides of triangle
- Compute distance from that point
- Note: also gives direction to closest point
- Distance (and direction) from mesh
- Compute for all possible triangles, take minimum
- Trick is to find small list of possible triangles with acceleration structure

Implicit Surface

- Simple function, metaballs, or interpolated from 3d grid ("level set")
- Recall - for metaballs need acceleration
- Particle inside: $\mathrm{f}(\mathrm{x})<\mathrm{o}$
- Trajectory cross:
- Just like ray-tracing - use secant method
- Object normal: $\nabla \mathrm{f} /|\nabla \mathrm{f}|$
- Distance from surface:
- If $f()$ is signed distance, then trivial
- Otherwise, painful, but $f()$ might be good enough for application

Back to particle collisions

- So now we can represent other geometry, how do we do a repulsion velocity field?
- $\mathrm{v}(\mathrm{x})=\mathrm{f}(\text { distance }(\mathrm{x}))^{*} \mathrm{n}(\mathrm{x})$
- $n(x)$ is the outward direction (=normal on surface)
- f is some decreasing function that drops towards zero far away
- Exponential $f(\mathrm{~d})=\mathrm{e}^{-\mathrm{k}^{* d}}$
- Or linear drop, truncated to zero: $\mathrm{f}(\mathrm{d})=\max \left(0, \mathrm{~m}-\mathrm{k}^{*} \mathrm{~d}\right)$
- Or more complicated
- Outward direction is plus/minus direction to closest point
- Aside: useful for more than just collisions e.g. fire particles streaming out of an object

Force-based repulsions

- Can do exactly the same trick for forcebased motion
- Add repulsion field to $F(x)$
- Simple, often works, but there are sometimes problems
- What are you trying to model?
- Robustness - high velocity impacts can penetrate arbitrarily far
- High velocity impacts may go straight through thin objects
- How much of a rebound do you want?

Damped repulsions

- Think of repulsion force as a generalized spring
- Add spring damping:

$$
F_{\text {damp }}=-D(v \cdot n(x)) n(x)
$$

- D is some parameter you set
- $\mathrm{n}(\mathrm{x})$ is the outward direction again

Critical Damping

- Three cases:
- Underdamped ($\mathrm{D}^{2}-4 \mathrm{MK}<0$)
- Oscillation with frequency $\omega \sim \frac{1}{2 \pi} \sqrt{K / M}$
- Characteristic time: $t \sim 2 \pi \sqrt{M / K}$
- Exponentially decays at rate $r=-D /(2 M)$
- Characteristic time: $t \sim 2 M / D$
- Overdamped ($\mathrm{D}^{2}-4 \mathrm{MK}>0$)
- No continued oscillation
- Exponentially decays at rates $r \sim-K / D,-D / M$
- Characteristic times: $t \sim D / K, M / D$
- Critically damped ($\left.\mathrm{D}^{2}-4 \mathrm{MK}=\mathrm{o}\right) \quad D=2 \sqrt{M K}$
- No continued oscillation
- Fastest decay possible at rate $r=-D /(2 M)$
- Characteristic time: $t \sim 2 M / D$

Aside: springs and damping

- How do you come up with reasonable values for spring constants and damping constants?
- And how do you pick good step sizes for differential equation solver (Forward Euler etc.)
- Look at 1D simplified model
- $\mathrm{Ma}=\mathrm{F}=-\mathrm{Kx}-\mathrm{Dv}$
- M is the mass, K is like a spring stiffness, D is the damping parameter
- Solve it analytically

Numerical time steps

- Should be proportional to minimum characteristic time
- Implicit methods like Backwards Euler actually let you take larger steps with stability, but wipe out all hope of accuracy for things with small characteristic time
- For nonlinear multi-dimensional forces, what are K and D ?
- Estimate them by figuring out what is the fastest $|\mathrm{F}|$ can change if you modify x or v respectively
- This is all very approximate, so don't get hung up on getting the "right" answer
- Will ultimately need a fudge factor anyhow (from experiments)

True Collisions

- Turn attention from repulsions for a while
- Model collision as a discrete event - a bounce
- Input: incoming velocity, object normal
- Output: outgoing velocity
- Need some idea of how "elastic" the collision
- Fully elastic - reflection
- Fully inelastic - sticks (or slides)
- Let's ignore friction for now
- Let's also ignore how to incorporate it into algorithm for moving particles for now

Relative velocity in collisions

- What if particle hits a moving object?
- Now process collision in terms of relative velocity
- $\mathrm{v}_{\text {rel }}=\mathrm{v}_{\text {particle }}-\mathrm{V}_{\text {object }}$
- Take normal and tangential components of relative velocity
- Reflect normal part appropriately to get new $\mathrm{V}_{\text {rel }}$
- Then new $v_{\text {particle }}=v_{\text {object }}+\left(\right.$ new $\left.v_{\text {rel }}\right)$

Newtonian Collisions

- Say object is stationary, normal at point of impact is n
- Incoming particle velocity is v
- Split v into normal and tangential components:

$$
\begin{aligned}
& v_{N}=v \cdot n \\
& v_{T}=v-v_{N} n
\end{aligned}
$$

- Newtonian model for outgoing velocity
- Unchanged tangential component v_{m}
- New normal component is $v_{N}^{\text {new }}=-\mathcal{E} v_{N}^{\text {old }}$
- The "coefficient of restitution" is ε, ranging from o (inelastic) to 1 (perfectly elastic)
- The final outgoing velocitv is

$$
v^{\text {new }}=v_{T}^{\text {old }}-\varepsilon v_{N}^{\text {old }} n
$$

