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CPSC 424
Review 3 (meshes ++ )
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Tensor Product Surfaces

More General Parametric Surfaces
• Use basis functions like for curves

• Apply independently to parametric directions s and t

• Works for arbitrary basis

Example:
• Bézier curve:

• Tensor product Bézier patch:
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Tensor Product Surfaces

Continuity
• Two patches

• are Ck continuous if for all t

• Same for s

• Special case – two patches sharing one corner
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Triangles

Barycentric Coordinates:

1;210  vvvp
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Tangent plane to surface S(u,v) is spanned 
by two partials of S:

Normal to surface

• perpendicular to tangent plane

Any vector in tangent plane is tangential to 
S(u,v)

Surfaces – differential geometry
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Curvature

Normal curvature of surface is defined for 
each tangential direction  

Principal curvatures Kmin & Kmax:  maximum 
and minimum of normal curvature   
• Correspond to two orthogonal tangent directions

– Principal directions 

• Not necessarily partial derivative directions

• Independent of parameterization 
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3D Curvature

Isotropic

Equal in all directions

spherical planar

kmin=kmax > 0 kmin=kmax = 0

Anisotropic

2 distinct principal 
directions

elliptic parabolic hyperbolic

kmax > 0
kmin > 0

kmin = 0

kmax > 0

kmin < 0

kmax > 0
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Principal Directions

min curvature max curvature
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Curvature

Typical measures:
• Gaussian curvature 

• Mean curvature

maxminkkK 

2
maxmin kk

H
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Clicker questions: 

Which type of  surface locally is point X?

A. Parabolic

B. Hyperbolic

C. Elliptic (non-isotropic)

D. Isotropic
X
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Clicker questions: 

Which type of  surface locally is point X?

A. Parabolic

B. Hyperbolic

C. Elliptic (non-isotropic)
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Standard Graph Definitions
G = <V,E>
V = vertices = 
{A,B,C,D,E,F,G,H,I,J,K,L}
E = edges = 
{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),
(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),
(J,L),(J,K),(K,L),(L,I)}

Vertex degree (valence) = number of edges incident on vertex 
deg(J) = 4, deg(H) = 2

Face: cycle of vertices/edges which cannot be shortened
F = faces = 
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,L),(C,D,I),
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)}
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Connectivity

Graph is connected if there is a path of edges 
connecting every two vertices

Graph G’=<V’,E’> is a subgraph of graph 
G=<V,E> if V’ is a subset of V and E’ is the 
subset of E incident on V’

Connected component of a graph: maximal 
connected subgraph
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Meshes

Boundary edge: adjacent to exactly one face
Regular edge: adjacent to exactly two faces
Singular edge: adjacent to more than two 
faces

Closed mesh: mesh with no boundary edges
Manifold mesh: mesh with no singular edges 

Mesh: graph embedded in R3

Non‐Manifold Closed Manifold Open Manifold
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Topology

v =12
f = 14
e = 25
c = 1
g = 0
b = 1

Genus of graph: half of
maximal number of closed paths
that do not disconnect the graph

(number of “holes”)

Genus(sphere)= 0
Genus(torus) = 1
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Topology

Euler-Poincare Formula

v+f-e = 2(c-g)-b

v = # vertices   c = # conn. comp
f = # faces       g = genus

e = # edges     b = # boundaries

v =12
f = 11
e = 22
c = 1
g = 0
b = 1
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Exercises

Theorem: Average vertex
degree in closed manifold 
triangle mesh is ~6

Proof: In such a mesh, f = 2e/3 
By Euler’s formula: v+2e/3-e = 2-2g
hence e = 3(v-2+2g) and f = 2(v-2+2g)

So Average(deg) = 2e/v = 6(v-2+2g)/v 
~ 6 for large v
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Half-Edge Data Structure

Half-edge record:
• Pointer to its origin, origin(e)

• Pointer to its twin half-edge, twin(e)

• Pointer to the face it bounds, IncidentFace(e) (face lies to left of 
e when traversed from origin to destination)

• Next and previous edge on boundary of IncidentFace(e)

e

twin(e)

origin(e)

IncFace(e)prev(e)

next(e)
 Vertex record:

 Coordinates 

 Pointer to one  half-
edge that has v as its 

origin

 Face record:
 Pointer to one half-

edge on its boundary
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Half-Edge Data Structure (cont.)

Operations supported:
• Walk around boundary of given face

• Visit all edges incident to vertex v

Queries:
• Most queries are O(1)
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Each face replaced by 4 new faces
Two kinds of new vertices:
• Green vertices are associated with old edges

• Blue vertices are associated with old vertices

Triangular subdivision 

Old vertices New vertices
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Loop’s scheme

New vertex is weighted average of old vertices

List of weights called subdivision mask or stencil
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Rule for new blue vertices (n –
vertex valence)

Rule for new green vertices
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Butterfly Scheme
 Interpolatory scheme

 New blue vertices inherit location of old vertices

 New green vertices calculated by following stencil:
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Subdivisons
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27

Refined mesh for close objects

Simplified mesh for far

Level of Detail (LOD)
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Simplification Operations (1)

Decimation 
• Vertex removal: 

– v  v-1

– f  f-2

Remaining vertices - subset of 
original vertex set
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29

Simplification Operations (2)

Decimation 
• Edge collapse

– v  v-1

– f  f-2

Vertices may move
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The Basic Algorithm

Repeat

• Select the element with minimal error

• Perform simplification operation (remove/contract)

• Update error (local/global) 

Until mesh size / quality is achieved
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31

 

Simplification Error Metrics

Measures
• Distance to plane

• Curvature

Usually approximated
• Average plane

• Discrete curvature
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32

Distance Metric: Quadrics

Choose point closest 
to set of planes 
(triangles)

Sum of squared 
distances to set of 
planes is quadratic 
 has a minimum
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Quadrics
Plane
• Ax + By + Cz + D = 0, where A2 + B2 + C2 = 1

• p = [A, B, C, D], v = [x, y, z, 1], v pT = 0

Quadratic distance between v and p:
p(v) = (v pT)2 

= (v pT) (p vT) = v (pTp) vT

= v KP v
T
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Distance to Set of Planes
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After v1, v2 are contracted to v,

Qv  Qv1+Qv2

Pseudo-global

All original planes persist during 

the entire simplification process

V1 V2 V


