CPSC 424
Review 3 (meshes ++)

Tensor Product Surfaces

More General Parametric Surfaces

- Use basis functions like for curves
- Apply independently to parametric directions s and t
- Works for arbitrary basis

Example:

- Bézier curve:

$$
F(t)=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}
$$

- Tensor product Bézier ${ }^{i=0}$ patch:

$$
F(s, t)=\sum_{i=0}^{m_{s}} \sum_{j=0}^{m_{t}} B_{i}^{m_{s}}(s) \cdot B_{j}^{m_{t}}(t) \cdot \mathbf{b}_{i, j}
$$

Tensor Product Surfaces

Continuity

- Two patches

$$
\begin{aligned}
& F(s, t):\left[s_{0}, s_{1}\right] \times\left[t_{0}, t_{1}\right], \\
& G(s, t):\left[s_{1}, s_{2}\right] \times\left[t_{0}, t_{1}\right]
\end{aligned}
$$

- are C^{k} continuous if for all t

$$
F^{(l)}(s, t)=G^{(l)}(s, t) ; l \leq k
$$

- Same for s
- Special case - two patches sharing one corner

Triangles

Barycentric Coordinates:

$$
\mathbf{p}=\alpha \mathbf{v}_{0}+\beta \mathbf{v}_{1}+\gamma \mathbf{v}_{2} ; \alpha+\beta+\gamma=1
$$

Surfaces - differential geometry

Tangent plane to surface $\mathrm{S}(\mathrm{u}, \mathrm{v})$ is spanned by two partials of S :

$$
\frac{\partial S(u, v)}{\partial u} \quad \frac{\partial S(u, v)}{\partial v}
$$

Normal to surface

$$
\vec{n}=\frac{\partial S}{\partial u} \times \frac{\partial S}{\partial}
$$

- perpendicular to tangent piane

Any vector in tangent plane is tangential to S(u,v)

Curvature

Normal curvature of surface is defined for each tangential direction

Principal curvatures Kmin \& Kmax: maximum and minimum of normal curvature

- Correspond to two orthogonal tangent directions
- Principal directions
- Not necessarily partial derivative directions
- Independent of parameterization

Curvature
Typical measures:

- Gaussian curvature

$$
K=k_{\min } k_{\max }
$$

- Mean curvature

$$
H=\frac{k_{\min }+k_{\max }}{2}
$$

Clicker questions:

Which type of surface locally is point X?
A. Parabolic
B. Hyperbolic
C. Elliptic (non-isotropic)
D. Isotropic

Clicker questions:

Which type of surface locally is point X?
A. Parabolic
B. Hyperbolic
C. Elliptic (non-isotropic)

D. Isotropic

Clicker questions:

Which type of surface locally is point X ?
A. Parabolic
B. Hyperbolic
C. Elliptic (non-isotropic)

D. Isotropic

Standard Graph Definitions


```
G = <V,E>
V = vertices =
{A,B,C,D,E,F,G,H,I,J,K,L}
E = edges =
{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),
(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),
(J,L),(J,K),(K,L),(L,I)}
```

Vertex degree (valence) = number of edges incident on vertex $\operatorname{deg}(J)=4, \operatorname{deg}(H)=2$

Face: cycle of vertices/edges which cannot be shortened F = faces =
\{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,L),(C,D,I), (D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)\}

Connectivity

UBC

\approx

Graph is connected if there is a path of edges connecting every two vertices

Graph $\mathbf{G}^{\prime}=<\mathbf{V}^{\prime}, \mathbf{E}^{\prime}>$ is a subgraph of graph $\mathbf{G}=<\mathbf{V}, \mathbf{E}>$ if \mathbf{V}^{\prime} is a subset of \mathbf{V} and \mathbf{E}^{\prime} is the subset of \mathbf{E} incident on \mathbf{V}^{\prime}

Connected component of a graph: maximal connected subgraph

Topology

Euler－Poincare Formula

$$
v+f-e=2(c-g)-b
$$

$\mathrm{v}=$ \＃vertices $\mathrm{c}=$ \＃conn．comp
$\mathrm{f}=$ \＃faces $\mathrm{g}=$ genus
e＝\＃edges b＝\＃boundaries

Exercises

```
Theorem: Average vertex
degree in closed manifold
triangle mesh is ~6
Proof: In such a mesh, f=2e/3
By Euler's formula: v+2e/3-e = 2-2g
hence e=3(v-2+2g) and f=2(v-2+2g)
So Average (deg) = 2e/v = 6(v-2+2g)/v
    ~ 6 for large v
```


Half-Edge Data Structure

- Vertex record:
- Coordinates
- Pointer to one halfedge that has v as its origin
- Face record:
- Pointer to one halfedge on its boundary

Half-edge record:

- Pointer to its origin, origin(e)
- Pointer to its twin half-edge, twin(e)
- Pointer to the face it bounds, IncidentFace(e) (face lies to left of e when traversed from origin to destination)
- Next and previous edge on boundary of IncidentFace(e)

Half-Edge Data Structure (cont.)

Operations supported:

- Walk around boundary of given face
- Visit all edges incident to vertex v

Queries:

- Most queries are O(1)

Triangular subdivision

Each face replaced by 4 new faces
Two kinds of new vertices:

- Green vertices are associated with old edges
- Blue vertices are associated with old vertices

Loop's scheme

朔維New vertex is weighted average of old vertices
List of weights called subdivision mask or stencil
-Rule for new blue vertices (n vertex valence)

Butterfly Scheme

\square Interpolatory scheme
New blue vertices inherit location of old vertices
\square New green vertices calculated by following stencil:

Level of Detail (LOD)

Refined mesh for close objects
Simplified mesh for far

Simplification Operations (1)

Decimation

- Vertex removal:
$-v \leftarrow v-1$
$-f \leftarrow f-2$

Remaining vertices - subset of original vertex set

Simplification Operations (2)

Decimation

- Edge collapse
$-v \leftarrow v-1$
$-f \leftarrow f-2$

Vertices may move

The Basic Algorithm

Repeat

- Select the element with minimal error
- Perform simplification operation (remove/contract)
- Update error (local/global)

Until mesh size / quality is achieved

Simplification Error Metrics

- Distance to plane
- Curvature

Usually approximated

- Average plane
- Discrete curvature

Distance Metric: Quadrics

Choose point closest to set of planes (triangles)

Sum of squared distances to set of planes is quadratic \Rightarrow has a minimum

Quadrics

Plane

- $\mathrm{A} x+\mathrm{B} y+\mathrm{C} z+\mathrm{D}=0$, where $\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}=1$
- $p=[A, B, C, D], v=[x, y, z, 1], v p^{\top}=0$

Quadratic distance between v and p :

$$
\begin{aligned}
\Delta_{p}(v) & =\left(v p^{\top}\right)^{2} \\
& =\left(v p^{T}\right)\left(p v^{\top}\right)=v\left(p^{T} p\right) v^{T} \\
& =v K_{P} v^{T} \\
K_{\mathrm{P}} & =\left[\begin{array}{cccc}
\mathrm{A}^{2} & \mathrm{AB} & \mathrm{AC} & \mathrm{AD} \\
\mathrm{AB} & \mathrm{~B}^{2} & \mathrm{BC} & \mathrm{BD} \\
\mathrm{AC} & \mathrm{BC} & \mathrm{C}^{2} & \mathrm{CD} \\
\mathrm{AD} & \mathrm{BD} & \mathrm{CD} & \mathrm{D}^{2}
\end{array}\right]
\end{aligned}
$$

Distance to Set of Planes

