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CPSC 424
Review 2 (curves & surfaces)
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Curves: Review

Curves in 2D and 3D
• Implicit vs. Explicit vs. Parametric curves

• Bézier curves, de Casteljau algorithm

• Continuity

• B-Splines

• Subdivision Curves
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Bézier Curves

Definition:
• Bézier curve is a polynomial curve that uses 

Bernstein polynomials as basis

• bi are called control points of Bézier curve

• Control polygon obtained by connecting control points 
with line segments
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Bernstein Polynomials
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Properties of Bézier Curves

• Endpoints b0 and bm of control polygon interpolated & 
corresponding parameter values are t=0 and t=1

• Bézier curve is tangential to control polygon at 
endpoints

• Curve lies within convex hull of control points

• Curve is affine invariant

• There is a fast, recursive evaluation algorithm – de 
Casteljau algorithm
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De Casteljau Algorithm

Graphical Interpretation:
• Determine point F(1/2) for the cubic Bézier curve 

given by the following four points:
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Observation

De Casteljau generates 2 new control 
polygons!

• For parameter interval [0,1/2], and [1/2,1]

• Can be used to recursively subdivide control polygon

© Wolfgang Heidrich & Alla Sheffer

Bezier Subdivision

Cubic case:
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Derivatives of Bézier Curves

• The derivative of a Bézier curve

is given as 
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Continuity

Def:
• A curve F(t) is called Ck-continuous if its kth derivative 

F(k)(t) exists (i.e. is continuous) everywhere

Note:
• Polynomial curves are infinitely continuous

Def:
• Two curve segments F(t) and G(t) are called Ck-

continuous at t0 if their first k derivatives match at t0
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Splines

Concept:
• Provide local control by piecing together multiple 

(polynomial) curves in  smooth fashion

• This is called Spline

Bezier spline: 
• sequence of Bezier curves (joined at different levels 

of continuity)
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Bezier Spline Continuity

• C0 :  share end control points bm=b’0

• C1 : bm – bm-1 = b’1 – b’0

• G1 : bm – bm-1 collinear to  b’1 – b’0
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B-Splines

Idea: Generate basis where functions are 
continuous cross domains 

Control point controls set of basis functions 
(to preserve continuity) 

Alternative view: continuous basis functions 
defined on several domains 
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B-Splines

Direct recursion formula:

Note:
• Not  an affine combination
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Uniform Cubic B-Spline Curves
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Uniform Cubic B-Spline Curves

For any t  [3,n] 

For any t  [j,j+1] only 4 basis functions are 
non zero

Any point on cubic B-Spline is affine 
combination of at most 4 control points 
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B-Splines do not interpolate any control 
points
• in particular end points

• Can achieve interpolation by replicating control points 
(or knots)

Boundary Conditions for B-Splines
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NURBs
• B-Spline (B-spline basis)

• Non-Uniform – different interval lengths (knots)

• Rational – rational basis functions
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Subdivision: 
Corner Cutting – Chaikin Algorithm
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Cubic B-Spline (corner cutting)

1/8 1/8

3/4
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The 4-point scheme

© Wolfgang Heidrich & Alla Sheffer

Proving scheme works

Proving scheme works:
• Convergence

• Degree of continuity

• Affine invariance

– As long as weights sum to 1
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Subdivision Matrix

Example: Chaikin subdivision
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Syllabus

Curves in 2D and 3D
• …

• Subdivision Curves

Properties of Curves and Surfaces
• Differential Geometry: 

– arc length

– curvature

– Fresnet frame

Surfaces
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Regularity

Definition:
• Differentiable parametric curve

is called regular if 

• (I.e. if the tangent vector is not 0 anywhere)

Note:
• Bézier curves not necessarily regular…
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Equivalence/Reparameterization

Definition
• Two regular curves

are geometrically equivalent if there is a 
strictly monotonic, differentiable reparameterization
function

with
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Equivalence/Reparameterization
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Clicker Question

Are the curves 
F(t) = (t,t)  t in [0,1] and G(t) = (t/3,t/3) t in [0,3] 
geometrically equivalent?

• A. Yes

• B. No 

• Not enough information
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Arc Length

Definition
• Arc length of regular curve

given as

Parameterization by arc length

• Note: this is a canonical representation for any curve

• Point is traveling along G with constant speed 1
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Curvature

Definition
• Let G be a curve parameterized by arc length

• We introduce the following terms:

– Unit tangent

– Curvature vector

– Curvature

– Principal normal

– Binormal
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 tC

Curvature

Corresponds to radius of 
osculating circle R=1/k

Measure curve bending

R=1/k
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Frenet Frame

Theorem:
• Curvature vector and tangent vector are 

perpendicular:

Note:
• Therefore, T, N, and B form an orthonormal 

coordinate frame

• This is called the Frenet Frame
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Torsion

With the same argument we get

Note:
• B’ is the torsion vector

•  is the torsion, and indicates how much the curve 
twists out of the plane (=0 means perfectly planar)

)()()(' sNssB 

© Wolfgang Heidrich & Alla Sheffer

Fundamental Theorem of Curves

Theorem:
• For given functions (s), (s) there exists exactly one 

(except for rotations and translations) unique curve 
that is parameterized by arc length and has curvature 
(s), and torsion (s)

Proof:
• Quite complex, see for example

– Da Carmo
Differential Geometry of Curves and Surfaces
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Geometric Continuity

Definition:
• Two curves

are Gk-continuous (geometrically continuous of 
degree k), if there are reparameterizations

that are Ck continuous, i.e.:

at shared parameter interval endpoint
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Basic surfaces
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Extrusion

Concept:
• Move a curve (“profile”) along a line segment

• The union of all points visited defines the surface

Profile

Extruded surface
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Surfaces of Revolution

Concept:
• Rotate profile curve around an axis

• R(v) rotation matrix ( v in [0,2])

)()(),( uFvRvuS 
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Sweeping

Concept:
• Generalize extrusion & revolution - sweep along 

arbitrary curve

• To orient profile at any point

– user specified

– use Fresnet frame
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Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D 
linear interpolation between 2 points in the plane

Given                         - associated parametric bilinear 
surface for                      is:
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• Given two curves a(t) and b(t) corresponding ruled 
surface is constructed by connecting curves with straight 
lines

Questions: 
• When is a ruled surface a bilinear patch ?

• When is a bilinear patch a ruled surface ?

Ruled Surfaces

S(u,v)=va(u)+(1-v)b(u)

a(u)
b(u)

u=1

u=0

u=1

u=0
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C v4 ( )
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Boolean Sum/Coons Patch (1967)

Given four connected curves Ci I=1,2,3,4  Boolean sum 
S(u,v) fills the interior with surface 

S(u,v) coincides with Ci along its boundaries

C u3( )

P01

P00

C u1( )

C v2 ( )
P10

11100100

422

311

)1()1()1)(1(),(

)()1()(),(

)()1()(),(

uvPPvuvPuPvuvuP

vCuvuCvuS

uCvuvCvuS





),(),(),(),( 21 vuPvuSvuSvuS 



22

© Wolfgang Heidrich & Alla Sheffer

Examples

© Wolfgang Heidrich & Alla Sheffer

Tensor Product Surfaces

More General Parametric Surfaces
• Use basis functions like for curves

• Apply independently to parametric directions s and t

• Works for arbitrary basis

Example:
• Bézier curve:

• Tensor product Bézier patch:
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Clicker question

What kind of surface best describes the 
shape on the right?

A. Extrusion

B. Revolution

C. Sweep 

D. Coons Patch

E. Ruled Surface
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Clicker question

What kind of surface best describes the 
shape on the right?

A. Extrusion

B. Revolution

C. Sweep 

D. Coons Patch

E. Ruled Surface
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Clicker question

What kind of surface best describes the 
shape on the right?

A. Extrusion

B. Revolution

C. Sweep 

D. Coons Patch

E. Ruled Surface
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Tensor Product Surfaces

More General Parametric Surfaces
• Use basis functions like for curves

• Apply independently to parametric directions s and t

• Works for arbitrary basis

Example:
• Bézier curve:

• Tensor product Bézier patch:
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Tensor Product Surfaces

Continuity
• Two patches

• are Ck continuous if for all t

• Same for s

• Special case – two patches sharing one corner
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Tensor Product Surfaces

Limitations: “suitcase corners”
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Bézier Triangles

Barycentric Coordinates:

1;210  vvvp
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Tangent plane to surface S(u,v) is spanned 
by two partials of S:

Normal to surface

• perpendicular to tangent plane

Any vector in tangent plane is tangential to 
S(u,v)

Surfaces – differential geometry
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Curvature

Normal curvature of surface is defined for 
each tangential direction  

Principal curvatures Kmin & Kmax:  maximum 
and minimum of normal curvature   
• Correspond to two orthogonal tangent directions

– Principal directions 

• Not necessarily partial derivative directions

• Independent of parameterization 
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3D Curvature

Isotropic

Equal in all directions

spherical planar

kmin=kmax > 0 kmin=kmax = 0

Anisotropic

2 distinct principal 
directions

elliptic parabolic hyperbolic

kmax > 0
kmin > 0

kmin = 0

kmax > 0

kmin < 0

kmax > 0
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Principal Directions

min curvature max curvature

© Wolfgang Heidrich & Alla Sheffer

Curvature

Typical measures:
• Gaussian curvature 

• Mean curvature

maxmin kkK 

2
maxmin kk

H
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Clicker questions: 

Which type of  surface locally is point X?

A. Parabolic

B. Hyperbolic

C. Elliptic (non-isotropic)

D. Isotropic
X
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Clicker questions: 

Which type of  surface locally is point X?

A. Parabolic

B. Hyperbolic

C. Elliptic (non-isotropic)

D. Isotropic

X
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Clicker questions: 

Which type of  surface locally is point X?

A. Parabolic

B. Hyperbolic

C. Elliptic (non-isotropic)

D. Isotropic

X
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Each face replaced by 4 new faces
Two kinds of new vertices:
• Green vertices are associated with old edges

• Blue vertices are associated with old vertices

Triangular subdivision 

Old vertices New vertices
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Loop’s scheme

New vertex is weighted average of old vertices

List of weights called subdivision mask or stencil
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Rule for new blue vertices (n –
vertex valence)

Rule for new green vertices
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Butterfly Scheme
 Interpolatory scheme

 New blue vertices inherit location of old vertices

 New green vertices calculated by following stencil:
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Subdivisons


