CPSC 424
Review 2 (curves \& surfaces)

Curves: Review

Curves in 2D and 3D

- Implicit vs. Explicit vs. Parametric curves
- Bézier curves, de Casteljau algorithm
- Continuity
- B-Splines
- Subdivision Curves

Bézier Curves

Definition:

- Bézier curve is a polynomial curve that uses Bernstein polynomials as basis

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)
$$

- b_{i} are called control points of Bézier curve
- Control polygon obtained by connecting control points with line segments

Bernstein Polynomials

$$
\begin{aligned}
& B_{i}^{m}(t):=\binom{m}{i} t^{i}(1-t)^{m-i} ; i=0 . . m ; t \in[0,1], \\
& \binom{m}{i}=\frac{m!}{(m-i)!i!}
\end{aligned}
$$

Properties of Bézier Curves

- Endpoints b_{0} and b_{m} of control polygon interpolated \& corresponding parameter values are $\mathrm{t}=0$ and $\mathrm{t}=1$
- Bézier curve is tangential to control polygon at endpoints
- Curve lies within convex hull of control points
- Curve is affine invariant
- There is a fast, recursive evaluation algorithm - de Casteljau algorithm

De Casteljau Algorithm

Graphical Interpretation:

- Determine point $F(1 / 2)$ for the cubic Bézier curve given by the following four points:

Observation

De Casteljau generates 2 new control

 polygons!- For parameter interval [0,1/2], and [1/2,1]
- Can be used to recursively subdivide control polygon

Derivatives of Bézier Curves

- The derivative of a Bézier curve
is given as $\quad F(t):=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}$

$$
F^{\prime}(t):=m \cdot \sum_{i=0}^{m-1} B_{i}^{m-1}(t) \cdot\left(\mathbf{b}_{i+1}-\mathbf{b}_{i}\right)
$$

Continuity

Def:

- A curve $F(t)$ is called C^{k}-continuous if its $\mathrm{k}^{\text {th }}$ derivative $F^{(k)}(t)$ exists (i.e. is continuous) everywhere
Note:
- Polynomial curves are infinitely continuous

Def:

- Two curve segments $F(t)$ and $G(t)$ are called C^{k} continuous at t_{0} if their first k derivatives match at t_{0}

Splines

Concept:

- Provide local control by piecing together multiple (polynomial) curves in smooth fashion
- This is called Spline

Bezier spline:

- sequence of Bezier curves (joined at different levels of continuity)

Bezier Spline Continuity

- C^{0} : share end control points $b_{m}=b_{0}^{\prime}$
- $C^{1}: b_{m}-b_{m-1}=b_{1}^{\prime}-b_{0}^{\prime}$
- $G^{1}: b_{m}-b_{m-1}$ collinear to $b_{1}^{\prime}-b_{0}^{\prime}$

B-Splines

Idea: Generate basis where functions are continuous cross domains

Control point controls set of basis functions (to preserve continuity)

Alternative view: continuous basis functions defined on several domains

B-Splines

Direct recursion formula:

$$
\begin{gathered}
N_{i}^{0}(t)=\left\{\begin{array}{cc}
1 & ; u_{i} \leq t<u_{i+1} \\
0 & ; \text { else }
\end{array}\right. \\
N_{i}^{l}(t)=\frac{t-u_{i}}{u_{i+l}-u_{i}} \cdot N_{i}^{l-1}(t)+\frac{u_{i+l+1}-t}{u_{i+l+1}-u_{i+1}} \cdot N_{i+1}^{l-1}(t)
\end{gathered}
$$

Note:

- Not an affine combination

Uniform Cubic B-Spline Curves

Definition

$$
\begin{aligned}
& C(t)=\sum_{i=0}^{n-1} P_{i} N_{i}^{3}(t) t \in[3, n] \\
& N_{i}^{3}(t)=\left\{\begin{array}{ccc}
r^{3} / 6 & r & =t-i \quad t \in[i, i+1] \\
\left(-3 r^{3}+3 r^{2}+3 r+1\right) / 6 & r=t-i-1 \quad t \in[i+1, i+2] \\
\left(3 r^{3}-6 r^{2}+4\right) / 6 & r & =t-i-2 t \in[i+2, i+3] \\
(1-r)^{3} / 6 & r & =t-i-3 t \in[i+3, i+4]
\end{array}\right.
\end{aligned}
$$

Uniform Cubic B-Spline Curves

For any $\boldsymbol{t} \in[3, n] \quad \sum_{i=j-3}^{j} N_{i}^{3}(t)=1$
For any $t \in[j, j+1]$ only 4 basis functions are non zero

$$
\sum_{i=0}^{n-1} N_{i}^{3}(t)=1
$$

Any point on cubic B-Spline is affine combination of at most 4 control points

Boundary Conditions for B-Splines

B-Splines do not interpolate any control points

- in particular end points
- Can achieve interpolation by replicating control points (or knots)

NURBs

- B-Spline (B-spline basis)
- Non-Uniform - different interval lengths (knots)
- Rational - rational basis functions

$$
C(t)=\frac{\sum_{i=0}^{n-1} w_{i} P_{i} N_{i}^{3}(t)}{\sum_{i=0}^{n-1} w_{i} N_{i}^{3}(t)} t \in[3, n]
$$

Subdivision:
 Corner Cutting - Chaikin Algorithm

Cubic B-Spline (corner cutting)

The 4-point scheme

Proving scheme works

Proving scheme works:

- Convergence
- Degree of continuity
- Affine invariance
- As long as weights sum to 1

Subdivision Matrix

Example: Chaikin subdivision

$$
\left(\begin{array}{l}
P_{0}^{i} \\
P_{1}^{i} \\
P_{2}^{i} \\
P_{3}^{i}
\end{array}\right)=\left(\begin{array}{cccc}
1 / 4 & 3 / 4 & 0 & 0 \\
0 & 3 / 4 & 1 / 4 & 0 \\
0 & 1 / 4 & 3 / 4 & 0 \\
0 & 0 & 3 / 4 & 1 / 4
\end{array}\right)^{i}\left(\begin{array}{c}
P_{0}^{0} \\
P_{1}^{0} \\
P_{2}^{0} \\
P_{3}^{0}
\end{array}\right)
$$

Syllabus

Curves in 2D and 3D

- ...
- Subdivision Curves

Properties of Curves and Surfaces

- Differential Geometry:
- arc length
- curvature
- Fresnet frame

Surfaces

Regularity

Definition:

- Differentiable parametric curve $F(t):[a, b] \mapsto \boldsymbol{R}^{3}$ is called regular if

$$
F^{\prime}(t) \neq 0, \forall t \in[a, b]
$$

- (I.e. if the tangent vector is not 0 anywhere)

Note:

- Bézier curves not necessarily regular...

Equivalence/Reparameterization

Definition

- Two regular curves

$$
F(t):[a, b] \mapsto \mathcal{R}^{3} \quad G(t):[c, d] \mapsto \mathcal{R}^{3}
$$

are geometrically equivalent $F \cong G$ if there is a strictly monotonic, differentiable reparameterization function

$$
\varphi(t):[a, b] \mapsto[c, d]
$$

with

$$
F(t)=G(\varphi(t))
$$

Equivalence/Reparameterization

Clicker Question

Are the curves
$F(t)=(t, t) t$ in $[0,1]$ and $G(t)=(t / 3, t / 3) t$ in $[0,3]$ geometrically equivalent?

- A. Yes
- B. No
- Not enough information

Arc Length

Definition

- Arc length of regular curve $F(t):[a, b] \mapsto \mathfrak{R}^{3}$ given as

$$
s(t):=\int_{a}^{t}\left\|F^{\prime}(\tilde{t})\right\| d \tilde{t}
$$

Parameterization by arc length

$$
G(s) \text { with } G(s(t))=F(t)
$$

- Note: this is a canonical representation for any curve
- Point is traveling along G with constant speed 1

Curvature

Definition

- Let G be a curve parameterized by arc length
- We introduce the following terms:
- Unit tangent $\quad T(s):=G^{\prime}(s)$
- Curvature vector $K(s):=G^{\prime \prime}(s)$
- Curvature $\quad \kappa(s):=\|K(s)\|$
- Principal normal $\quad N(s):=K(s) / \kappa(s)$
- Binormal $\quad B(s):=T(s) \times N(s)$

Frenet Frame

Theorem:

- Curvature vector and tangent vector are perpendicular:

$$
K(s) \perp T(s)
$$

Note:

- Therefore, T, N, and B form an orthonormal coordinate frame
- This is called the Frenet Frame

Torsion

With the same argument we get

$$
B^{\prime}(s)=\tau(s) \cdot N(s)
$$

Note:

- B^{\prime} is the torsion vector
- τ is the torsion, and indicates how much the curve twists out of the plane ($\tau=0$ means perfectly planar)

Fundamental Theorem of Curves

Theorem:

- For given functions $\kappa(s), \tau(s)$ there exists exactly one (except for rotations and translations) unique curve that is parameterized by arc length and has curvature $\kappa(s)$, and torsion $\tau(s)$

Proof:

- Quite complex, see for example
- Da Carmo

Differential Geometry of Curves and Surfaces

Geometric Continuity

Definition:

- Two curves

$$
F_{1}(t):[a, b] \mapsto \mathfrak{R}^{3}, F_{2}(t):[b, c] \mapsto \mathfrak{R}^{3}
$$

are $\underline{\mathrm{G}}^{\mathrm{k}}$-continuous (geometrically continuous of degree k), if there are reparameterizations

$$
G_{1}(t) \cong F_{1}(t) \text { and } G_{2}(t) \cong F_{2}(t)
$$

that are C^{k} continuous, i.e.:

$$
G_{1}^{l}(t)=G_{2}^{l}(t), l=0 \ldots k
$$

at shared parameter interval endpoint

Extrusion

Concept:

- Move a curve ("profile") along a line segment
- The union of all points visited defines the surface

Surfaces of Revolution

Concept:

- Rotate profile curve around an axis
- $\mathrm{R}(\mathrm{v})$ rotation matrix (v in $[0,2 \pi]$)

$$
S(u, v)=R(v) F(u)
$$

Sweeping

Concept:

- Generalize extrusion \& revolution - sweep along arbitrary curve
- To orient profile at any point
- user specified
- use Fresnet frame

Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
Given $P_{00}, P_{01}, P_{10}, P_{11}$ - associated parametric bilinear surface for $u, v \in[0,1]$ is:

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

Ruled Surfaces

- Given two curves $a(t)$ and $b(t)$ corresponding ruled surface is constructed by connecting curves with straight lines

$$
S(u, v)=v a(u)+(1-v) b(u)
$$

Questions:

- When is a ruled surface a bilinear patch ?
- When is a bilinear patch a ruled surface?

Boolean Sum/Coons Patch (1967)

Given four connected curves $\mathrm{Ci} \mathrm{I}=1,2,3,4$ Boolean sum $S(u, v)$ fills the interior with surface

$$
\begin{aligned}
& S_{1}(u, v)=v C_{1}(u)+(1-v) C_{3}(u) \\
& S_{2}(u, v)=u C_{2}(v)+(1-u) C_{4}(v)
\end{aligned}
$$

$P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}$

$$
S(u, v)=S_{1}(u, v)+S_{2}(u, v)-P(u, v)
$$

$\mathrm{S}(\mathrm{u}, \mathrm{v})$ coincides with Ci along its boundaries

Examples

(b)
«vvingariy neidrich \& Alla Sheffer

Tensor Product Surfaces

More General Parametric Surfaces

- Use basis functions like for curves
- Apply independently to parametric directions s and t
- Works for arbitrary basis

Example:

- Bézier curve:

$$
F(t)=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}
$$

- Tensor product Bézier ${ }^{i=0}$ patch:

$$
F(s, t)=\sum_{i=0}^{m_{s}} \sum_{j=0}^{m_{t}} B_{i}^{m_{s}}(s) \cdot B_{j}^{m_{t}}(t) \cdot \mathbf{b}_{i, j}
$$

Clicker question

What kind of surface best describes the shape on the right?
A. Extrusion
B. Revolution
C. Sweep
D. Coons Patch

E. Ruled Surface

Clicker question

What kind of surface best describes the shape on the right?
A. Extrusion
B. Revolution
C. Sweep

D. Coons Patch
E. Ruled Surface

Clicker question

What kind of surface best describes the shape on the right?
A. Extrusion
B. Revolution
C. Sweep
D. Coons Patch

E. Ruled Surface

Tensor Product Surfaces

More General Parametric Surfaces

- Use basis functions like for curves
- Apply independently to parametric directions s and t
- Works for arbitrary basis

Example:

- Bézier curve:

$$
F(t)=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}
$$

- Tensor product Bézier ${ }^{i=0}$ patch:

$$
F(s, t)=\sum_{i=0}^{m_{s}} \sum_{j=0}^{m_{t}} B_{i}^{m_{s}}(s) \cdot B_{j}^{m_{t}}(t) \cdot \mathbf{b}_{i, j}
$$

Tensor Product Surfaces

Continuity

- Two patches

$$
\begin{aligned}
& F(s, t):\left[s_{0}, s_{1}\right] \times\left[t_{0}, t_{1}\right], \\
& G(s, t):\left[s_{1}, s_{2}\right] \times\left[t_{0}, t_{1}\right]
\end{aligned}
$$

- are C^{k} continuous if for all t

$$
F^{(l)}(s, t)=G^{(l)}(s, t) ; l \leq k
$$

- Same for s
- Special case - two patches sharing one corner

Tensor Product Surfaces

Limitations: "suitcase corners"

Bézier Triangles

Barycentric Coordinates:

$$
\mathbf{p}=\alpha \mathbf{v}_{0}+\beta \mathbf{v}_{1}+\gamma \mathbf{v}_{2} ; \alpha+\beta+\gamma=1
$$

Surfaces - differential geometry

Tangent plane to surface $\mathrm{S}(\mathrm{u}, \mathrm{v})$ is spanned by two partials of S :
$\frac{\partial S(u, v)}{\partial u} \quad \frac{\partial S(u, v)}{\partial v}$

Normal to surface

$$
\vec{n}=\frac{\partial S}{\partial u} \times \frac{\partial S}{\partial}
$$

- perpendicular to tangent piane

Any vector in tangent plane is tangential to S(u,v)

Curvature

Normal curvature of surface is defined for each tangential direction

Principal curvatures Kmin \& Kmax: maximum and minimum of normal curvature

- Correspond to two orthogonal tangent directions
- Principal directions
- Not necessarily partial derivative directions
- Independent of parameterization

3D Curvature

Curvature

Typical measures:

- Gaussian curvature

$$
K=k_{\min } k_{\max }
$$

- Mean curvature

$$
H=\frac{k_{\min }+k_{\max }}{2}
$$

Clicker questions:

Which type of surface locally is point X?
A. Parabolic
B. Hyperbolic
C. Elliptic (non-isotropic)
D. Isotropic

Clicker questions:

Which type of surface locally is point X ?
A. Parabolic
B. Hyperbolic
C. Elliptic (non-isotropic)

D. Isotropic

Clicker questions:

Which type of surface locally is point X?
A. Parabolic
B. Hyperbolic
C. Elliptic (non-isotropic)

D. Isotropic

Triangular subdivision

Each face replaced by 4 new faces
Two kinds of new vertices:

- Green vertices are associated with old edges
- Blue vertices are associated with old vertices

Loop's scheme

New vertex is weighted average of old vertices
List of weights called subdivision mask or stencil

-Rule for new blue vertices ($n-$

 vertex valence)

Butterfly Scheme

Interpolatory schemeNew blue vertices inherit location of old verticesNew green vertices calculated by following stencil:

