CPSC 424 Review I (curves)

Curves: Review

Curves in 2D and 3D

- Implicit vs. Explicit vs. Parametric curves
- Bézier curves, de Casteljau algorithm
- Continuity

Curves \& Surfaces as Explicit Functions

Curves:

$$
y=F(x)
$$

Surfaces:

$$
z=F(x, y)
$$

Examples:

Not a function in Cartesian coord.,
$y= \pm \sqrt{1-x^{2}}$

Curves \& Surfaces as Explicit Functions

Not representable as a function:

Limitations of explicit functions:

- Cannot model every curve in 2D
- No true 3D curves possible
- All curves confined to a plane

Curves \& Surfaces as Implicit Functions

Curves

$$
F(x, y)=0
$$

Surfaces

$$
F(x, y, z)=0
$$

Interpretation for curves:

- Iso-lines (contours) in a terrain

Property:

- If F is continuous, implicit curves and surfaces are always closed or extend to infinity

Curves \& Surfaces as Implicit Functions

Conversion:

- Explicit to implicit: trivial

$$
y-F(x)=0
$$

- Implicit to explicit: hard
- Solving for y involves root finding!

Limitations of implicit curves:

- Curves only in 2D
- Every smooth implicit function in 3D describes a surface!
- Often unintuitive
- (Difficult to render (display))

- But: useful for many tasks, including modeling, ML,medical imaging

Curves \& Surfaces as Parametric Functions

Concept:

- Curve as function of artificial "time" parameter t

2D curve:

$$
\binom{x}{y}=\binom{F_{x}(t)}{F_{y}(t)}=: F(t) ; F: \mathscr{R} \mapsto \mathscr{R}^{2}
$$

3D curve:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
F_{x}(t) \\
F_{y}(t) \\
F_{z}(t)
\end{array}\right)=: F(t) ; F: \boldsymbol{R} \mapsto \mathcal{R}^{3}
$$

Curves \& Surfaces as Parametric Functions

Curve example:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\cos t \\
\sin t \\
t
\end{array}\right)
$$

Surfaces (in 3D):

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
F_{x}(s, t) \\
F_{y}(s, t) \\
F_{z}(s, t)
\end{array}\right)=F(s, t) ; F: \mathscr{R}^{2} \mapsto \mathcal{R}^{3}
$$

Curves \& Surfaces as Parametric Functions

This works in arbitrary dimensions!

- Curves:

$$
\mathbf{x}=F(t) ; F: \mathfrak{R} \mapsto \mathscr{R}^{d}
$$

- Surfaces:

$$
\mathbf{x}=F(s, t) ; F: \mathscr{R}^{2} \mapsto \mathcal{R}^{d}
$$

- Hypersurfaces:

$$
\mathbf{x}=F(\mathbf{t}) ; F: \mathscr{R}^{n} \mapsto \mathscr{R}^{d} ; n<d
$$

Notation:

- Bold variables (\mathbf{t}, \mathbf{x}) denote vectors, while italics denote scalars (t, d).

Splines: parametric curves over geometric base

Geometric meaning of coefficients (base)

- Approximate/interpolate set of positions, derivatives, etc.

Splines

Description = basis functions + coefficients

$$
\begin{aligned}
& F(t)=\sum_{i=0}^{n} P_{i} B_{i}(t)=(x(t), y(t)) \\
& x(t)=\sum_{i=0}^{n} P_{i}^{x} B_{i}(t) \\
& y(t)=\sum_{i=0}^{n} P_{i}^{y} B_{i}(t)
\end{aligned}
$$

- Same basis functions for all coordinates

Parametric Spline Curves

Commonly used classes:

- Polynomials
- Lagrange, Bézier, Hermite
- Piecewise polynomials
- B-splines
- (Rational and piecewise-rational curves)
- Rational Bézier curves, rational B-splines (NURBS)

Interpolate "Control" Points: Lagrange Polynomials

Use points we want to interpolate as basis

- Polynomial degree $=$ number of input points -1

Basis Functions: Lagrange Polynomials

- Given: $\mathrm{m}+1$ parameter values $t_{0} \ldots t_{m}$
- Define

$$
\begin{gathered}
L_{i}^{m}(t):=\prod_{j=0 . m, j \neq i} \frac{t-t_{j}}{t_{i}-t_{j}} ; i=0 \ldots m \\
L_{i}^{m}\left(t_{k}\right)=\left\{\begin{array}{l}
1 ; i=k \\
0 ; \text { else }
\end{array}\right.
\end{gathered}
$$

- Lagrange spline

$$
F(t)=\sum_{i=0}^{m} L_{i}^{m}\left(t_{\dot{\mathrm{b}}}\right) \cdot b_{i}
$$

Properties?

Other Option: Hermite Cubic Basis

Geometrically-oriented coefficients

- 2 positions + 2 tangents

Require $F(0)=P_{0,} F(1)=P_{l}, F^{\prime}(0)=T_{0,} F^{\prime}(1)=T_{1}$ Define basis function per requirement

$$
F(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

Hermite Cubic Basis

Can satisfy with cubic polynomials as basis

$$
h_{i j}(t)=a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}
$$

Obtain - solve 4 linear equations in 4 unknowns for each basis function

$$
h_{i j}(t): i, j=0,1, t \in[0,1]
$$

curve	$\boldsymbol{F}(\mathbf{0})$	$\boldsymbol{F}(\mathbf{1})$	$\boldsymbol{F}^{\prime}(\mathbf{0})$	$\boldsymbol{F} \boldsymbol{(1)}$
$h_{00}(t)$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$h_{01}(t)$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$h_{10}(t)$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$h_{11}(t)$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Hermite Cubic Basis

Four polynomials that satisfy the conditions

$$
\begin{array}{ll}
h_{00}(t)=t^{2}(2 t-3)+1 & h_{01}(t)=-t^{2}(2 t-3) \\
h_{10}(t)=t(t-1)^{2} & h_{11}(t)=t^{2}(t-1)
\end{array}
$$

Properties?

Bézier Curves

Definition:

- Bézier curve is a polynomial curve that uses Bernstein polynomials as basis

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)
$$

- b_{i} are called control points of Bézier curve
- Control polygon obtained by connecting control points with line segments

Bernstein Polynomials

$$
\begin{aligned}
& B_{i}^{m}(t):=\binom{m}{i} t^{i}(1-t)^{m-i} ; i=0 . . m ; t \in[0,1], \\
& \binom{m}{i}=\frac{m!}{(m-i)!i!}
\end{aligned}
$$

Properties?

Properties of Bézier Curves

- Endpoints b_{0} and b_{m} of control polygon interpolated \& corresponding parameter values are $t=0$ and $\mathrm{t}=1$
- Bézier curve is tangential to control polygon at endpoints
- Curve lies within convex hull of control points
- Curve is affine invariant
- There is a fast, recursive evaluation algorithm - de Casteljau algorithm
- Which of these apply to: Hermite, Lagrange?

De Casteljau Algorithm

Graphical Interpretation:

- Determine point $F(1 / 2)$ for the cubic Bézier curve given by the following four points:

Bezier Subdivision

De Casteljau generates 2 new control

 polygons!- For parameter interval [0,1/2], and [1/2,1]
- Can be used to recursively subdivide control polygon \& approximate actual curve
- Useful for drawing, etc..

Derivatives of Bézier Curves

Theorem:

- The derivative of a Bézier curve

$$
F(t):=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}
$$

is given as

$$
F^{\prime}(t):=m \cdot \sum_{i=0}^{m-1} B_{i}^{m-1}(t) \cdot\left(\mathbf{b}_{i+1}-\mathbf{b}_{i}\right)
$$

Continuity

Def:

- A curve $F(t)$ is called C^{k}-continuous if its $\mathrm{k}^{\text {th }}$ derivative $F^{(k)}(t)$ exists (i.e. is continuous) everywhere

Note:

- Polynomial curves are infinitely continuous

Def:

- Two curve segments $F(t)$ defined over $\left[t, \mathrm{t}_{0}\right]$ and $G(t)$ defined over [$\mathrm{t}_{0}, \mathrm{t}$ '] are called C^{k}-continuous at t_{0} if their first k derivatives match at t_{0}
- Definition extends to cases with "shifted" parameter intervals $F(t)\left[t, t_{0}\right]$ and $G(t)[t, t$,$] are called C^{k}-$ continuous if at if first k derivatives of $F(t)$ at t_{0} match first k derivatives of $\mathcal{G}(t)$ at t_{l}

Bezier Continuity

- C^{0} : share end control points $b_{m}=b_{0}^{\prime}$
- $C^{1}: b_{m}-b_{m-1}=b_{1}^{\prime}-b_{0}^{\prime}$
- $\boldsymbol{G}^{1}: b_{m}-b_{m-1}$ collinear to $b_{1}^{\prime}-b_{0}^{\prime}$

