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CPSC 424
Review I (curves)
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Curves: Review

Curves in 2D and 3D
• Implicit vs. Explicit vs. Parametric curves

• Bézier curves, de Casteljau algorithm

• Continuity
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Curves & Surfaces as
Explicit Functions

Curves:

Surfaces:

Examples:
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Curves & Surfaces as
Explicit Functions

Not representable as a function:

Limitations of explicit functions:
• Cannot model every curve in 2D

• No true 3D curves possible

– All curves confined to a plane
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Curves & Surfaces as
Implicit Functions

Curves

Surfaces

Interpretation for curves:
• Iso-lines (contours) in a terrain

Property:
• If F is continuous, implicit curves and surfaces are 

always closed or extend to infinity
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Curves & Surfaces as
Implicit Functions

Conversion:
• Explicit to implicit: trivial

• Implicit to explicit: hard

– Solving for y involves root finding!

Limitations of implicit curves:
• Curves only in 2D

– Every smooth implicit function in 3D                           
describes  a surface!

• Often unintuitive

• (Difficult to render (display))

• But: useful for many tasks, including modeling, ML,medical
imaging
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Curves & Surfaces as
Parametric Functions

Concept:
• Curve as function of artificial “time” parameter t

2D curve:

3D curve:
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Curves & Surfaces as
Parametric Functions

Curve example:

Surfaces (in 3D):
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Curves & Surfaces as
Parametric Functions

This works in arbitrary dimensions!
• Curves:

• Surfaces:

• Hypersurfaces:

Notation:
• Bold variables (t, x) denote vectors, while italics

denote scalars (t, d).
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Geometric meaning of coefficients 
(base)
• Approximate/interpolate set of positions, 

derivatives, etc..

Splines: parametric curves over 
geometric base
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Description = basis functions + 
coefficients

• Same basis functions for all coordinates 

Splines
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Parametric Spline Curves

Commonly used classes:
• Polynomials

– Lagrange, Bézier, Hermite

• Piecewise polynomials

– B-splines

• (Rational and piecewise-rational curves)

– Rational Bézier curves, rational B-splines (NURBS)
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Interpolate “Control” Points: 
Lagrange Polynomials

Use points we want to interpolate as basis
• Polynomial degree = number of input points – 1 
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Basis Functions: 
Lagrange Polynomials
• Given: m+1 parameter values t0…tm

• Define

• Lagrange spline
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Properties?
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Geometrically-oriented coefficients
• 2 positions + 2 tangents 

Require F(0)=P0, F(1) = P1, F’(0)=T0, F’(1)=T1

Define basis function per requirement 

Other Option: Hermite Cubic Basis
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Can satisfy with cubic polynomials as basis

Obtain - solve 4 linear equations in 4 
unknowns for each basis function

Hermite Cubic Basis
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Four polynomials that satisfy the 
conditions

Hermite Cubic Basis
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Properties?
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Bézier Curves

Definition:
• Bézier curve is a polynomial curve that uses 

Bernstein polynomials as basis

• bi are called control points of Bézier curve

• Control polygon obtained by connecting control points 
with line segments
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Bernstein Polynomials
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Properties?
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Properties of Bézier Curves

• Endpoints b0 and bm of control polygon interpolated & 
corresponding parameter values are t=0 and t=1

• Bézier curve is tangential to control polygon at 
endpoints

• Curve lies within convex hull of control points

• Curve is affine invariant

• There is a fast, recursive evaluation algorithm – de 
Casteljau algorithm

• Which of these apply to: Hermite, Lagrange?
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De Casteljau Algorithm

Graphical Interpretation:
• Determine point F(1/2) for the cubic Bézier curve 

given by the following four points:
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Bezier Subdivision

De Casteljau generates 2 new control 
polygons!

• For parameter interval [0,1/2], and [1/2,1]

• Can be used to recursively subdivide control polygon 
& approximate actual curve

• Useful for drawing, etc.. 
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Example

Cubic case:
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Derivatives of Bézier Curves

Theorem:
• The derivative of a Bézier curve

is given as
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Continuity
Def:
• A curve F(t) is called Ck-continuous if its kth derivative 

F(k)(t) exists (i.e. is continuous) everywhere

Note:
• Polynomial curves are infinitely continuous

Def:
• Two curve segments F(t) defined over [t,t0] and G(t) 

defined over [t0,t’] are called Ck-continuous at t0 if their 
first k derivatives match at t0

– Definition extends to cases with “shifted” parameter 
intervals F(t) [t,t0] and G(t) [t1,t’] are called Ck-
continuous if at if first k derivatives of F(t) at t0 
match first k derivatives of G(t) at t1
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Bezier Continuity

• C0 :  share end control points bm=b’0

• C1 : bm – bm-1 = b’1 – b’0

• G1 : bm – bm-1 collinear to  b’1 – b’0


