The initial control polygon is $b_{0}, \ldots, b_{m}$, we want to find a new set of points $b_{0}^{\prime}, \ldots, b_{m+1}^{\prime}$ so that they describe the same Bezier curve.

To do that, let's express $B_{i}^{m}(t)$ via $B_{i}^{m+1}$ :

$$
\begin{equation*}
B_{i}^{m}(t)=(1-t) B_{i}^{m}(t)+t B_{i}^{m}(t)=\frac{m+1-i}{m+1} B_{i}^{m+1}(t)+\frac{i+1}{m+1} B_{i+1}^{m+1}(t) \tag{1}
\end{equation*}
$$

Then we can rewrite the equation of our curve using the Bernstein polynomials of higher order:

$$
\begin{array}{r}
F(t)=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{\mathbf{i}}=\sum_{i=0}^{m} \frac{m+1-i}{m+1} B_{i}^{m+1}(t) \cdot \mathbf{b}_{\mathbf{i}}+\sum_{i=0}^{m} \frac{i+1}{m+1} B_{i+1}^{m+1}(t) \cdot \mathbf{b}_{\mathbf{i}}= \\
=\sum_{i=0}^{m+1}\left(\frac{i}{m+1} \mathbf{b}_{\mathbf{i}-\mathbf{1}}+\left(1-\frac{i}{m+1}\right) \mathbf{b}_{\mathbf{i}}\right) B_{i}^{m+1}(t)=\sum_{i=0}^{m+1} \mathbf{b}_{\mathbf{i}}^{\prime} B_{i}^{m+1}(t) \tag{3}
\end{array}
$$

Thus we have found an expression of the same curve via $m+1$ control points, so we have elevated the degree.

