
@ Alla Sheffer/Wolfgang Heidrich 1

© Wolfgang Heidrich & Alla Sheffer

CPSC 424
Bézier Curves
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Syllabus

Curves in 2D and 3D
• Implicit vs. Explicit vs. Parametric curves

• Bézier curves, de Casteljau algorithm

• Continuity

• B-Splines

• Subdivision Curves

Properties of Curves and Surfaces

Surfaces/Meshes/Advanced Topics
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Clicker Test

Do you have a clicker?

A. Hardware
B. Mobile
C. No
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Curves & Surfaces as
Parametric Functions

Concept:
• Curve as function of artificial “time” parameter t

2D curve:

3D curve:
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Parametric Curves

Advantage:
• Arbitrary curves in arbitrary dimensions

Still a problem:
• Unintuitive

– Try to find a formula for a specific curve you have 
in mind!

• Hard to program with
– Deal with arbitrary mathematical functions

Solution:
• Restrict yourself to specific class of functions
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Description = basis functions + coefficients

• Same basis functions for all coordinates 

Spline Curves
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Polynomial Curves

Polynomial Curves:
• Restrict to polynomial functions of degree  m:

• Note:  bi are vectors!

• Example curve in 2D:
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Polynomial Curves

Advantages:
• Computationally easy to handle

– b0 … bm uniquely describe curve (finite storage, 
easy to represent)

Disadvantages:
• Not all shapes representable

– Partially fix with piecewise functions later (splines)
• Still not very intuitive

– Fix: represent polynomials in different basis
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Assign GEOMETRIC meaning to 
coefficients (base)

• Approximate/interpolate set of positions, 
derivatives, etc..
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Parametric Curves

Commonly used classes:
• Polynomials

– Bézier curves, Hermite interpolation etc.

• Piecewise polynomials

– B-splines

• Rational and piecewise-rational curves

– Rational Bézier curves, rational B-splines (NURBS)
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Interpolate “Control” Points: 
Lagrange Polynomials

Use points we want to interpolate as controls
• Polynomial degree = number of input points

• https://www.ibiblio.org/e-notes/Splines/lagrange.html
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Basis Functions: 
Lagrange Polynomials
• Given: m+1 parameter values t0…tm

• Define

• Clear from definition:
– All Li

m are polynomials of degree m

–

– In particular, all Li
m are linearly independent!
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Lagrangr Polynomials (cont)

• Li
m are linearly independent & there are m+1 of them - basis 

for polynomials of degree up to m

• Can write any polynomial of degree up to m as

• In addition, we have for all i:

– In other words, the polynomial interpolates the points (ti, bi)
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Clicker Question

For a Lagrange curve with 4 control points  
positioned along a horizontal line. If I 
move the first point up, will the curve 
between two last points

A. Move up

B. Move down

C. Stay where it was

D. No idea
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Lagrange Polynomials

• https://www.ibiblio.org/e-notes/Splines/lagrange.html

• Oscillates unpredictably 
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Other Option: Hermite Curves
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Geometrically-oriented coefficients
• 2 positions + 2 tangents 

Require F(0)=P0, F(1) = P1, F’(0)=T0, F’(1)=T1

Define basis function per requirement 

Other Option: Hermite Cubic Basis
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To enforce C(0)=P0, C(1) = P1, C’(0)=T0, C’(1)=T1 basis 
should satisfy 

Hermite Basis Functions
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Can satisfy with cubic polynomials as basis

Obtain - solve 4 linear equations in 4 
unknowns for each basis function

Hermite Cubic Basis
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Four polynomials that satisfy the 
conditions

Hermite Cubic Basis
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Bézier Curves

Definition:
• Bézier curve is a polynomial curve that uses 

Bernstein polynomials as basis

• bi are called control points of Bézier curve

• Control polygon obtained by connecting control points 
with line segments
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Bernstein Polynomials
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Clicker Question

What is the value of B0
m at t=0?

A. Depends on m

B. 1

C. 0
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Bernstein Polynomials

• Graph for degree m=1:!)!(
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Q:  Which color is B0
1 ?

A. Red
B. Green
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Bernstein Polynomials

• Graph for m=2:

• Graph for m=3:
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Bernstein Polynomials

Properties:
• Bi

m(t) is a polynomial of degree m

•

• Bi
m(t)= Bm-i

m(1-t)
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Bernstein Polynomials

Properties:

• Bi
m(t) has exactly one maximum in the interval 0..1. It 

is at t=i/m (proof: compute derivative…)

• W/o proof: all (m+1) functions Bi
m are linearly 

independent
– Thus they form a basis for all polynomials of 

degree  m

]1,0[;..0;)1(:)( 







  tmitt

i

m
tB imim

i

© Wolfgang Heidrich & Alla Sheffer

Bernstein Polynomials

More properties
•

– (proof: apply Binomial Theorem to definition)

•

– (proof on board)

• Important (later) for fast evaluation algorithm of Bézier 
curves (de Casteljau algorithm)
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Properties of Bézier Curves
(Pierre Bézier, Renault, about 1970)

Easy to see:
• Endpoints b0 and bm of control polygon interpolated & 

corresponding parameter values are t=0 and t=1

Without proof for the moment (will be easier 
to show later):
• Bézier curve is tangential to control polygon at 

endpoints

• Curve lies within convex hull of control points

• Curve is affine invariant

• There is a fast, recursive evaluation algorithm
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Clicker Question

Is a Bezier curve defined by colinear points 
a straight line?

A. Always
B. Never
C. Sometimes 


