CPSC 424
 Curves: Implicit vs. Explicit vs. Parametric

UBC合

Syllabus

Curves in 2D and 3D

- Implicit vs. Explicit vs. Parametric curves
- Bézier curves, de Casteljau algorithm
- Continuity
- B-Splines
- Subdivision Curves

Properties of Curves and Surfaces

Surfaces/Meshes/Advanced Topics

How to represent shape (2D or 3D)?

Geometry - Curves/2D shapes

- Boundary representations

- Alternative: 2D shapes

Pixel based

How to represent 3D shape?

- Most common: Boundary representations

- Alternative: Volumetric representations

Voxel based

Primitive based

Modeling Geometry

Approaches:

- Fixed set of primitives
- Curves: lines, circles, rectangles...
- Surfaces: spheres, cylinders...
- Hard to assemble arbitrary (smooth) geometry
- Freeform curves/surfaces
- Single representation for arbitrarily complex geometry
- Curves and surfaces as functions with built-in smoothness properties
- Bézier curves, splines
- Discrete: meshes

Curves: Explicit vs. Implicit vs. Parametric

Curves \& Surfaces as Explicit Functions

Curves:

$$
y=F(x)
$$

Surfaces:

$$
z=F(x, y)
$$

Examples:

Not a function in Cartesian coord.,
$y= \pm \sqrt{1-x^{2}}$

Curves \& Surfaces as Explicit Functions

Not representable as a function:

Limitations of explicit functions:

- Cannot model every curve in 2D
- No true 3D curves possible
- All curves confined to a plane

Curves \& Surfaces as Implicit Functions

Curves

$$
F(x, y)=0
$$

Surfaces

$$
F(x, y, z)=0
$$

Interpretation for curves:

- Iso-lines (contours) in a terrain

Property:

- If F is continuous, implicit curves and surfaces are always closed or extend to infinity

Curves \& Surfaces as Implicit Functions

Examples:

$$
\begin{aligned}
& x^{2}+y^{2}-1=0 \\
& -5 x /\left(x^{2}+y^{2}+1\right)=c
\end{aligned}
$$

File Edit View Format Options Style Legend Axes Projection Anlination Export Eill Edit View Format Options Style color Axes Projection Anlination Export Window

Curves \& Surfaces as Implicit Functions

Conversion:

- Explicit to implicit: trivial

$$
y-F(x)=0
$$

- Implicit to explicit: hard
- Solving for y involves root finding!

Limitations of implicits:

- Curves only in 2D
- Every implicit function in 3D describes a surface!
- Often unintuitive

- Challenging to render (typically use ray tracing)
- Useful for many settings including modeling, machine learning

Implicit Functions in Medical Imaging

Data:

- CT \& MRI scanners produce volume of density values $F(x, y, z)$
- Individual features (bone surface, brain surface) are iso-surfaces of the volume: $F(x, y, z)=c$

MRI

CT

© Wolfgang Heidrich \& Alla Sheffer

Curves \& Surfaces as Parametric Functions

Concept:

- Curve as function of artificial "time" parameter t

2D curve:

$$
\binom{x}{y}=\binom{F_{x}(t)}{F_{y}(t)}=: F(t) ; F: \mathscr{R} \mapsto \mathcal{R}^{2}
$$

3D curve:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
F_{x}(t) \\
F_{y}(t) \\
F_{z}(t)
\end{array}\right)=: F(t) ; F: \boldsymbol{R} \mapsto \mathfrak{R}^{3}
$$

Curves \& Surfaces as Parametric Functions

Curve example: $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ t\end{array}\right)$
Surfaces (in 3D):

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
F_{x}(s, t) \\
F_{y}(s, t) \\
F_{z}(s, t)
\end{array}\right)=F(s, t) ; F: \mathfrak{R}^{2} \mapsto \boldsymbol{R}^{3}
$$

Curves \& Surfaces as Parametric Functions

This works in arbitrary dimensions!

- Curves:

$$
\mathbf{x}=F(t) ; F: \mathscr{R} \mapsto \mathscr{R}^{d}
$$

- Surfaces:

$$
\mathbf{x}=F(s, t) ; F: \mathcal{R}^{2} \mapsto \mathcal{R}^{d}
$$

- Hypersurfaces:

$$
\mathbf{x}=F(\mathbf{t}) ; F: \mathscr{R}^{n} \mapsto \mathscr{R}^{d} ; n<d
$$

Notation:

- Bold variables (\mathbf{t}, \mathbf{x}) denote vectors, while italics denote scalars (t, d).

Parametric Curves

Advantage:

- Arbitrary curves in arbitrary dimensions

Still a problem:

- Unintuitive
- Try to find a formula for a specific curve you have in mind!
- Hard to program with
- Deal with arbitrary mathematical functions

Solution:

- Restrict yourself to specific class of functions

Spline Curves

Description $=$ basis functions + coefficients

$$
\begin{aligned}
& F(t)=\sum_{i=0}^{n} P_{i} B_{i}(t)=(x(t), y(t)) \\
& x(t)=\sum_{i=0}^{n} P_{i}^{x} B_{i}(t) \\
& y(t)=\sum_{i=0}^{n} P_{i}^{y} B_{i}(t)
\end{aligned}
$$

- Same basis functions for all coordinates

Example: Polynomial Curves

Polynomial Curves:

- Restrict to polynomial functions of degree $\leq m$:

$$
\mathbf{x}=\sum_{i=0}^{m} \mathbf{b}_{i} t^{i}
$$

- Note: $\mathbf{b}_{\mathbf{i}}$ are vectors!
- Example curve in 2D:

$$
\binom{x}{y}=\sum_{i=0}^{m}\binom{b_{x, i}}{b_{y, i}} t^{i}
$$

Polynomial Curves

Advantages:

- Computationally easy to handle
$\mathbf{P}_{0} \ldots \mathbf{P}_{n}$ uniquely describe curve (finite storage, easy to represent)
Disadvantages:
- Not all shapes representable

What basis functions B_{i} should we use?

Splines: parametric curves over geometric base

Geometric meaning of coefficients (base)

- Approximate/interpolate set of positions, derivatives, etc..

Example: Curves in PowerPoint

Parametric Spline Curves

Commonly used classes:

- Polynomials
- Bézier curves, Hermite interpolation etc.
- Piecewise polynomials
- B-splines
- Rational and piecewise-rational curves
- Rational Bézier curves, rational B-splines (NURBS)

