## Marching cubes



## Grid Implicits

Voxel grid with values at vertices
Defines implicit function in 3D

- interpolate grid values

Shape defined by isosurface

- isosurface = set of points with constant isovalue $\alpha$
- separates values above $\alpha$ from values below



## Marching cubes

## Voxels

Voxel - cube with values at eight corners

- Each value is above or below isovalue $\alpha$

Each voxel is either:

- Entirely inside isosurface
- Entirely outside isosurface
- Intersected by isosurface



## Reconstruction

## Extract triangulation approximating isosurface

MC main observation: Can extract triangulation independently per voxel

$2^{8}=256$ possible configurations (per voxel)

- reduced to 15 (symmetry and rotations)


## Basic MC Algorithm

For each voxel produce set of triangles

- Based on above/below corner configuration
- Empty for nonintersecting voxels
- Approximate surface inside voxel



## Configurations

For each configuration add 1-4 triangles to isosurface

Isosurface vertices computed by:

- Interpolation along edges (according to grid values)
- better shading, smoother surfaces
- Default - mid-edges


## Marching cubes



## Consistency Problem

Can produce non-manifold results

- Isovalue surfaces with "holes" Example:

- Voxeı witn conriguration o snaring face with complement of configuration 3


## Ambiguous Faces



Face containing two diagonally opposite marked grid points and two unmarked ones


- Two locally valid interpretations

- Source of MC consistency problem


## Marching cubes

## Consistency

## Problem:

- Connection of isosurface points on shared face done one way on one face \& another way on the other

Need consistency $\rightarrow$ use different triangulations

If choices are consistent get topologically correct surface

## Solution

For each problematic configuration have more than one triangulation
Distinguish different cases by choosing pairwise connections of four vertices on common face


## Marching cubes

## Asymptotic Decider

Select connectivity that better fits implicit function
Use bilinear interpolation to approximate function

- 2D extension of interpolation
$B(s, t)=\left(\begin{array}{ll}1-s & s\end{array}\right)\left(\begin{array}{ll}B_{00} & B_{01} \\ B_{10} & B_{11}\end{array}\right)\binom{1-t}{t}$

$\{(s, t): 0 \leq s \leq 1, \quad 0 \leq t \leq 1\}$
- $B_{i j}$ - isovalues at face corners


## Asymptotic Decider

E.g. $B_{00} \& B_{11}$ above $\alpha$

Test value at face "center"

$$
\left(S_{\alpha} T_{\alpha}\right)
$$

- If $\alpha>B\left(\mathrm{~S}_{\alpha}, \mathrm{T}_{\alpha}\right)$
- connect $\left(S_{l}, 1\right)-\left(1, T_{1}\right) \&\left(S_{0}, 0\right)-$ $\left(0, T_{0}\right)$
- else
- connect $\left(S_{1}, 1\right)-\left(0, T_{0}\right) \& \quad\left(S_{0}, 0\right)-$ $\left(1, T_{1}\right)$



## Asymptotic Decider

Choice of "center":
$S_{\alpha}=\frac{B_{00}-B_{01}}{B_{00}+B_{11}-B_{01}-B_{10}}$
$\mathrm{B}\left(\mathrm{S}_{\alpha}, \mathrm{T}_{\alpha}\right)=\frac{\mathrm{B}_{00} \mathrm{~B}_{11}+\mathrm{B}_{10} \mathrm{~B}_{01}}{\mathrm{~B}_{00}+\mathrm{B}_{11}-\mathrm{B}_{01}-\mathrm{B}_{10}}$.

$$
\mathrm{T}_{\alpha}=\frac{\mathrm{B}_{00}-\mathrm{B}_{10}}{\mathrm{~B}_{00}+\mathrm{B}_{11}-\mathrm{B}_{01}-\mathrm{B}_{10}}
$$



- Related to contour curves asymptotic behaviour


## Various Cases

Some configurations have no ambiguous faces $\rightarrow$ no modifications
Other configurations need modifications according to number of ambiguous faces

- Apply decoder to each face to decide on triangulation template


16


