Marching cubes

CPSC 424 Implicits
(deck derived from CMU 15462/662/Keenan Crane)

Algebraic Surfaces (Implicit)

- Surface is zero set of a polynomial in x, y, z
- Examples:

$$
x^{2}+y^{2}+z^{2}=1
$$

$$
\left(R-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}=r^{2}
$$

$$
\left(x^{2}+\frac{9 y^{2}}{4}+z^{2}-1\right)^{3}=
$$

$$
x^{2} z^{3}+\frac{9 y^{2} z^{3}}{80}
$$

Algebraic Surfaces (Implicit)

- What about more complicated shapes?

- Very hard to come up with polynomials!

Constructive Solid Geometry (Implicit)

- Build more complicated shapes via Boolean operations
- Basic operations:

Constructive Solid Geometry (Implicit)

- Then chain together expressions:

https://iquilezles.org/articles/distfunctions/

Marching cubes

Blobby Surfaces (Implicit)

- Instead of Booleans, gradually blend surfaces together:

$\phi_{p}(x):=e^{-|x-p|^{2}} \quad$ (Gaussian centered at p)
$f:=\phi_{p}+\phi_{q} \quad$ (Sum of Gaussians centered at different points)

Blobby Surfaces (Implicit)

Easier to understand in 2D:

Marching cubes

Blending Distance Functions (Implicit)

- A distance function gives distance to closest point on object
- Can blend any two distance functions d1, d2:

- Similar strategy to points, though many possibilities. E.g.,

$$
f(x):=e^{-d_{1}(x)^{2}}+e^{-d_{2}(x)^{2}}-\frac{1}{2}
$$

Blending Distance Functions (Implicit)

- Apearance depends on how we combine functions
- Q: How do we implement a Boolean union of $d_{1}(x)$, $d_{2}(x)$?
- A: Just take the minimum: $f(x)=\min \left(d_{1}(x), d_{2}(x)\right)$

Scene of pure distance functions

UBC UBC
see
http://iquilezles.org/ © Alla ShefluM/Metanteñobatie

Level Set Methods (Implicit)

- Implicit surfaces have some nice features (e.g., merging/splitting)
- But, hard to describe complex shapes in closed form
- Alternative: store a grid of values approximating function

-.55	-.45	-.35	-.30	-.25
-.30	-.25	-.20	-.10	-.10

Level Set Methods (Implicit)

-.55	-.45	-.35	-.30	-.25
-.30	-.25	-.20	-.10	-.10
$f(\mathbf{X})=0$				
	-.15	-.10	.10	.15
-.05	.10	.05	.25	.35
.15	.20	.25	.55	.60

- Surface is found where interpolated values equal zero
- Provides much more explicit control over shape (like a texture)
- Unlike closed-form expressions, run into problems of aliasing!

Level Sets from Medical Data (CT, MRI, etc.)

Level sets encode, e.g., constant tissue density

