Mesh Simplification

12,000 2,000 300
Simplifier

Motivation

Reduce information content
Accelerate rendering
Multi-resolution models
Level of Detail (LOD)

Refined mesh for close objects
Simplified mesh for far

Methodology

Sequence of local operations
- Involve near neighbors - only small patch affected in each operation
- Each operation introduces error
- Find and apply operation which introduces the least error
Simplification Operations (1)

Decimation

- Vertex removal:
 - \(v \leftarrow v-1 \)
 - \(f \leftarrow f-2 \)

Remaining vertices - subset of original vertex set

Simplification Operations (2)

Decimation

- Edge collapse
 - \(v \leftarrow v-1 \)
 - \(f \leftarrow f-2 \)

Vertices may move
Error Control

Local error: Compare new patch with previous iteration
- Fast
- Accumulates error
- Memory-less

Global error: Compare new patch with original mesh
- Slow
- Better quality control
- Can be used as termination condition
- Must remember the original mesh throughout the algorithm

Local vs. Global Error

![Rabbit Meshes]

2000 faces 488 faces 488 faces
The Basic Algorithm

Repeat

- Select the element with minimal error
- Perform simplification operation (remove/contract)
- Update error (local/global)

Until mesh size / quality is achieved

Edge Collapse Algorithm

Simplification operation:

Edge collapse (pair contraction)

Error metric:

distance, pseudo-global
Distance Metric: Quadrics

Choose point closest to set of planes (triangles)

Sum of squared distances to set of planes is quadratic ⇒ has a minimum

Quadrics

Plane

- $Ax + By + Cz + D = 0$, where $A^2 + B^2 + C^2 = 1$
- $p = [A, B, C, D], v = [x, y, z, 1], v^T p = 0$

Quadratic distance between v and p:

$$\Delta_p(v) = (v^T p)^2$$

$$= (v^T p) (p v^T) = v (p^T p) v^T$$

$$= v K_p v^T$$

$$K_p = \begin{bmatrix}
 A^2 & AB & AC & AD \\
 AB & B^2 & BC & BD \\
 AC & BC & C^2 & CD \\
 AD & BD & CD & D^2 \\
\end{bmatrix}$$
Distance to Set of Planes

\[\Delta(v) = \sum_{p \in \text{planes}(v)} \Delta_p(v) \]
\[= \sum_{p \in \text{planes}(v)} (v K_p v^T) \]
\[= v(\sum_{p \in \text{planes}(v)} K_p) v^T \]
\[= vQv^T \]

After \(v_1, v_2 \) are contracted to \(v \),
\[Q_v \leftarrow Q_{v1} + Q_{v2} \]

Pseudo-global

All original planes persist during the entire simplification process.

Contracting Two Vertices

Goal: Given edge \(e = (v_1, v_2) \), find contracted

\[v = (x, y, z, 1) \] that minimizes \(\Delta(v) \):

\[\frac{\partial \Delta}{\partial x} = \frac{\partial \Delta}{\partial y} = \frac{\partial \Delta}{\partial z} = 0 \]

Solve system of linear normal equations:

\[
\begin{bmatrix}
q_{11} & q_{12} & q_{13} & q_{14} \\
q_{21} & q_{22} & q_{23} & q_{24} \\
q_{31} & q_{32} & q_{33} & q_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
v \\
0 \\
0 \\
1
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

If no solution - select the edge midpoint
Algorithm

Compute Q_v for all the mesh vertices
Identify all valid pairs
Compute for each valid pair (v_1, v_2) the contracted vertex v and its error $\Delta(v)$
Store all valid pairs in a priority queue (according to $\Delta(v)$)

While reduction goal not met
 • Contract edge (v_1, v_2) with the smallest error to v
 • Update the priority queue with new valid pairs

Examples

Dolphin (Flipper)

Original - 12,337 faces

2,000 faces

300 faces (142 vertices)
Examples

- Original - 12,000 faces
- 2,000 faces
- 298 faces (140 vertices)

Simplifier

Pros and Cons

Pros
- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient

Cons
- Difficulties along boundaries
- Difficulties with coplanar planes
- Introduces new vertices not present in the original mesh