CPSC 424 Simplification

Syllabus

Curves in 2D and 3D
Properties of Curves and Surfaces

Surfaces

Polygonal meshes

- Definitions \& Data Structures
- Subdivision (Loop, Butterfly, ...)
- Simplification
- Acquisition
- Smoothing

Motivation

UBC和等

- Reduce information content
- Accelerate rendering
- Multi-resolution models

Level of Detail (LOD)

Refined mesh for close objects
Simplified mesh for far

Methodology

Sequence of local operations

- Involve near neighbors - only small patch affected in each operation
- Each operation introduces error
- Find and apply operation which introduces the least error

Simplification Operations (1)

Decimation

- Vertex removal:
$-v \leftarrow v-1$
$-f \leftarrow f-2$

Remaining vertices - subset of original vertex set

Simplification Operations (2)

Decimation

- Edge collapse
$-v \leftarrow v-1$
$-f \leftarrow f-2$

Vertices may move

Error Control

Local error: Compare new patch with previous

 iteration- Fast
- Accumulates error
- Memory-less

Global error: Compare new patch with original mesh

- Slow
- Better quality control
- Can be used as termination condition
- Must remember the original mesh throughout the algorithm

Local vs. Global Error

 faces

488 faces
 488 faces

Simplification Error Metrics

- Distance to plane
- Curvature

Usually approximated

- Average plane
- Discrete curvature

14
© Alla Sheffer

The Basic Algorithm

Repeat

- Select the element with minimal error
- Perform simplification operation (remove/contract)
- Update error (local/global)

Until mesh size / quality is achieved

Triangulating the Hole

Vertex removal produces non-planar loop

- Split loop recursively
- Split plane orthogonal to the average plane

Control aspect ratio
Triangulation may fail

- Vertex is not removed

21
© Alla Sheffer

Pros and Cons

Pros:

- Efficient
- Simple to implement and use
- Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh

Cons:

- Error is not bounded
- Local error evaluation causes error to accumulate

Edge Collapse Algorithm

Simplification operation: Edge collapse (pair contraction)
 Error metric: distance, pseudo-global Also simplifies topology

Distance Metric: Quadrics

Choose point closest to set of planes (triangles)

Sum of squared distances to set of planes is quadratic \Rightarrow has a minimum

25

Quadrics

Plane

- $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$, where $\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}=1$
- $p=[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}], v=[x, y, z, 1], v p^{\top}=0$

Quadratic distance between v and p :

$$
\begin{aligned}
& \Delta_{p}(v)=\left(v p^{T}\right)^{2} \\
&=\left(v p^{T}\right)\left(p v^{T}\right)=v\left(p^{T} p\right) v^{T} \\
&=v K_{P} v^{T} \\
& K_{P}=\left[\begin{array}{cccc}
\mathrm{A}^{2} & \mathrm{AB} & \mathrm{AC} & \mathrm{AD} \\
\mathrm{AB} & \mathrm{~B}^{2} & \mathrm{BC} & \mathrm{BD} \\
\mathrm{AC} & \mathrm{BC} & \mathrm{C}^{2} & \mathrm{CD} \\
\mathrm{AD} & \mathrm{BD} & \mathrm{CD} & \mathrm{D}^{2}
\end{array}\right]
\end{aligned}
$$

Distance to Set of Planes

Contracting Two Vertices

- Goal: Given edge $e=\left(v_{1}, v_{2}\right)$, find contracted $v=(x, y, z, 1)$ that minimizes $\Delta(\mathrm{v})$:

$$
\partial \Delta / \partial \mathbf{x}=\partial \Delta / \partial \mathbf{y}=\partial \Delta / \partial \mathbf{z}=0
$$

- Solve system of linear normal equations:

$$
\left[\begin{array}{cccc}
\mathrm{q}_{11} & \mathrm{q}_{12} & \mathrm{q}_{13} & \mathrm{q}_{14} \\
\mathrm{q}_{21} & \mathrm{q}_{22} & \mathrm{q}_{23} & \mathrm{q}_{24} \\
\mathrm{q}_{31} & \mathrm{q}_{32} & \mathrm{q}_{33} & \mathrm{q}_{34} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- If no solution - select the edge midpoint

Selecting Valid Pairs for Contraction

Edges:

$\left\{\left(v_{1}, v_{2}\right):\left(v_{1} v_{2}\right)\right.$ is in the mesh\}
Close vertices:

$$
\left\{\left(v_{1}, v_{2}\right):\left\|v_{1}-v_{2}\right\|<T\right\}
$$

- Threshold T is input parameter

Algorithm

- Compute Q_{V} for all the mesh vertices
- Identify all valid pairs
- Compute for each valid pair $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ the contracted vertex v and its error $\Delta(v)$
- Store all valid pairs in a priority queue (according to $\Delta(\mathrm{v})$)
- While reduction goal not met
- Contract edge $\left(v_{1}, v_{2}\right)$ with the smallest error to v
- Update the priority queue with new valid pairs

Examples

Original - 12,337 faces

Examples

Original - 12,000
2,000 faces
298 faces (140 vertices) Simplifi

Pros and Cons

Pros

- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient

Cons

- Difficulties along boundaries
- Difficulties with coplanar planes
- Introduces new vertices not present in the original mesh

