

Syllabus

Curves in 2D and 3D
Properties of Curves and Surfaces

Surfaces

- Tensor-product surfaces
- Bézier triangles
- Differential Geometry
- Polygonal meshes
- Subdivision Surfaces

Meshes

Standard Graph Definitions

UBC

Vertex degree (valence) = number of edges incident on vertex $\operatorname{deg}(J)=4, \operatorname{deg}(H)=2$

Face: cycle of vertices/edges which cannot be shortened F = faces =
$\{(A, H, G),(A, J, K, G),(B, A, J),(B, C, L, J),(C, I, L),(C, D, I)$,
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)\}

Connectivity

Graph is connected if there is a path of edges connecting every two vertices

Graph $\mathbf{G}^{\prime}=<\mathbf{V}^{\prime}, \mathbf{E}^{\prime}>$ is a subgraph of graph $\mathbf{G}=<\mathbf{V}, \mathbf{E}>$ if \mathbf{V}^{\prime} is a subset of \mathbf{V} and \mathbf{E}^{\prime} is the subset of \mathbf{E} incident on \mathbf{V}^{\prime}

Connected component of a graph: maximal connected subgraph

How do we find if a graph is connected?

Graph Embedding

Graph is embedded in R^{d} if each vertex is assigned a position in R^{d} and the edges are represented by straight lines

Embedding in R^{2}

Embedding in R^{3}

UBC N
 \section*{Meshes}

We will discuss connected (3-connected) manifold triangular meshes (closed or open)

Clicker question

Is this graph connected? Is it manifold?
A. Yes \& Yes
B. Yes \& No
C. No \& Yes
D. No \& No

E. Not enough information

Clicker question

What if I tell you that the 'red' edge is part of 3 faces?

Is this graph connected? Is it manifold?
A. Yes \& Yes
B. Yes \& No
C. No \& Yes
D. No \& No
E. Not enough information

Topology

Genus of graph: half of maximal number of closed paths that do not disconnect the graph (number of "holes")

Genus(sphere) $=0$
Genus(torus) $=1$

Topology Quiz

What is the genus of a teapot?
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5

Topology Quiz

What is the genus of this shape?
A. 0
B. 2
C. 4
D. 6
E. None of the above

Topology

Euler-Poincare Formula
$v+f-e=\mathbf{2 (c - g})-b$
$\mathrm{v}=$ \# vertices $\mathrm{c}=$ \# conn. comp
$\mathrm{f}=$ \# faces $\mathrm{g}=$ genus
e = \# edges b = \# boundaries

How to find number of boundaries?

How to find number of connected components?

Topology

Euler-Poincare Formula
v+f-e = 2(c-g)-b
v \# vertices $c=\#$ conn. comp $f=\#$ faces $g=$ genus $e=\#$ edges $b=\#$ boundaries

Exercises

Theorem: Average vertex degree in closed manifold triangle mesh is ~ 6

Proof: In such a mesh, $f=2 e / 3$
By Euler's formula: $v+2 e / 3-e=2-2 g$
hence $e=3(v-2+2 g)$ and $f=2(v-2+2 g)$
So Average $(\mathrm{deg})=2 \mathrm{e} / \mathrm{v}=6(\mathrm{v}-2+2 \mathrm{~g}) / \mathrm{v}$
~ 6 for large v

Exercises

Corollary: Only toroidal (g=1)
closed manifold triangle mesh can be
regular (all vertex degrees are 6)
Proof: In regular mesh average
degree is exactly 6
Can happen only if $\mathrm{g}=1$

Exercises

Theorem: In closed manifold mesh:
$2 e \geq 3 f$ (equality for triangle mesh),
$2 e \geq 3 v$
Corollary: No closed manifold triangle mesh can have 7 edges

Corollary: $2 \mathrm{f}-4 \geq \mathrm{v}$

Orientability

Orientation of a face is clockwise or anticlockwise order in which its vertices and edges are listed

This defines the direction of face normal

Oriented
$F=\{(L, J, B),(B, C, L),(L, C, I)$, (I,K,L),(L,K,J)\} Not Oriented
$F=\{(B, J, L),(B, C, L),(L, C, I)$, (L,I,K),(L,K,J)\}

Not Backface Culled
Backface Culled
© Alla Sheffer

