CPSC 424
Bezier Triangles

Syllabus

Curves in 2D and 3D
Properties of Curves and Surfaces
Surfaces
• Sweeping/extrusion, surfaces of revolution
• Tensor-product surfaces
• Bézier triangles
• Polygonal meshes, mesh data structures
• Subdivision
Bézier Triangles

Idea:
- Use similar idea that lead to definition of Bézier curves to define surface with
 - *Parameterization over triangle*
 - *Small total degree*

Parameterization
- Searching for
 - *Coordinate system over triangle*
 - *Should be symmetric in all vertices*
Bézier Triangles

Barycentric Coordinates:

\[p = \alpha v_0 + \beta v_1 + \gamma v_2; \alpha + \beta + \gamma = 1 \]

Polynomial Basis Over Triangles

Bernstein Polynomials

- **2D:**
 \[B^m_i(t) := \binom{m}{i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1] \]

- **3D:**
 \[B^m_{ijk}(\alpha, \beta, \gamma) := \binom{m}{i, j, k} \alpha^i \beta^j \gamma^k; i + j + k = m; i, j, k \geq 0 \]

where

\[\binom{m}{i, j, k} := \frac{m!}{i! j! k!} \]
Bezier Triangle Control Polyhedron

De Casteljau for Bézier Triangles

De Casteljau:
De Casteljau for Bézier Triangles

Subdivision

- Evaluation at Barycentric coordinates (1/3, 1/3, 1/3) gives subdivision of original triangle into 3 new ones
- Problem: edges are never subdivided, triangle shape becomes worse and worse
- Solution: use multiple de Casteljau steps to split triangle into 4 patches

Continuity

Approach:
- Use derivatives to obtain constraints along edges of control mesh
- Need degree 5 Bézier triangle for C^1 continuity!
 - Over-constrained for lower degrees
Continuity

- For C2 many different schemes available
 - *Different advantages and disadvantages (low degree vs. patch shape vs. continuity)*
- Continuity around corners is even more complex
 - *Very hard to get continuous surfaces over triangle meshes*

Surfaces (so far)

Tensor Product Surfaces:
- Simple
- Always over rectangular domain
- Singularities when trying co-locating control points to simulate other domain shapes

Bézier Triangles:
- Simple
- Continuity is a problem

Not discussed:
- Triangular splines: really complex & hard to control, not very successful
Surfaces – differential geometry

Tangent plane to surface $S(u,v)$ is spanned by two partials of S:

$$
\frac{\partial S(u,v)}{\partial u}, \frac{\partial S(u,v)}{\partial v}
$$

Normal to surface

\[\vec{n} = \frac{\partial S}{\partial u} \times \frac{\partial S}{\partial v} \]

• perpendicular to tangent plane

Any vector in tangent plane is tangential to $S(u,v)$

Curvature

Normal curvature of surface is defined for each tangential direction

Principal curvatures K_{min} & K_{max}: maximum and minimum of normal curvature

• Correspond to two orthogonal tangent directions
 – Principal directions
• Not necessarily partial derivative directions
• Independent of parameterization
3D Curvature

Isotropic
Equal in all directions
- spherical
- planar

Anisotropic
2 distinct principal directions
- elliptic
- parabolic
- hyperbolic

Principal Directions
- min curvature
- max curvature
Curvature

Typical measures:

- **Gaussian** curvature

 \[K = k_{\text{min}} k_{\text{max}} \]

- **Mean** curvature

 \[H = \frac{k_{\text{min}} + k_{\text{max}}}{2} \]