CPSC 424

From Curves to Surfaces

Syllabus

Curves in 2D and 3D
Properties of Curves and Surfaces Surfaces

- Sweeping, extrusion, surfaces of revolution
- Tensor-product surfaces
- Bézier triangles

Surfaces

Categories:

- Explicit $z=F(x, y)$
- Implicit $F(x, y, z)=0$
- Parametric $F(s, t): \mathcal{R}^{2} \mapsto \mathcal{R}^{3}$

$$
F(s, t):=\left(\begin{array}{l}
F_{x}(s, t) \\
F_{y}(s, t) \\
F_{z}(s, t)
\end{array}\right)
$$

From Curves to Surfaces

Motivation

- Derive surface shapes from curves through set of simple operations
- Extrusion
- Revolution
- Sweep
- Ruling
- The curves can be modeled using any of the techniques we have discussed

Extrusion

Concept:

- Move a curve ("profile") along a line segment
- The union of all points visited defines the surface

Extrusion as Parametric Surface

Curves:

- Profile: arbitrary curve $P(t)$
- Line segment for sweeping:

$$
L(s)=(1-s) \cdot \mathbf{p}_{0}+s \cdot \mathbf{p}_{1}
$$

Swept Surface:

$$
F(s, t)=L(s)+P(t)
$$

- Parametric function has very specific structure
- Generalized sweeping along arbitrary curve more complex

Surfaces of Revolution

Concept:

- Rotate profile curve around an axis
- $\mathrm{R}(\mathrm{v})$ rotation matrix (v in $[0,2 \pi]$)

$$
S(u, v)=R(v) F(u)
$$

Sweeping

Concept:

- Generalize extrusion \& revolution - sweep along arbitrary curve
- To orient profile at any point
- user specified
- use Frenet frame

Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
Given $P_{00}, P_{01}, P_{10}, P_{11}$ - associated parametric bilinear surface for $u, v \in[0,1]$ is:

Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
Given $P_{00}, P_{01}, P_{10}, P_{11}$ - associated parametric bilinear surface for $u, v \in[0,1]$ is:

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

Bilinear Patch

Bilinear Patches

Given $P_{00}, P_{01}, P_{10}, P_{11}$ - associated parametric bilinear surface for $u, v \in[0,1]$ is:

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

Questions:

- What does an isoparametric curve of a bilinear patch look like?
- When is a bilinear patch planar?

Quad Mesh: Union of Bilinear Patches

Ruled Surfaces

- Given two curves $a(t)$ and $b(t)$ corresponding ruled surface is constructed by connecting curves with straight lines

$$
S(u, v)=v a(u)+(1-v) b(u)
$$

Ruled Surfaces

- Given two curves $a(t)$ and $b(t)$ corresponding ruled surface is constructed by connecting curves with straight lines

$$
S(u, v)=v a(u)+(1-v) b(u)
$$

Questions:

- When is a ruled surface a bilinear patch ?
- When is a bilinear patch a ruled surface?

Boolean Sum/Coons Patch (1967)

Interpolate four-sided curve loop

Boolean Sum/Coons Patch (1967)

Given four connected curves Ci $I=1,2,3,4$ Boolean sum $\mathrm{S}(\mathrm{u}, \mathrm{v})$ fills the interior with surface

$$
\begin{aligned}
& S_{1}(u, v)=v C_{1}(u)+(1-v) C_{3}(u) \\
& S_{2}(u, v)=u C_{2}(v)+(1-u) C_{4}(v)
\end{aligned}
$$

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

$$
S(u, v)=S_{1}(u, v)+S_{2}(u, v)-P(u, v)
$$

$\mathrm{S}(\mathrm{u}, \mathrm{v})$ coincides with Ci along its boundaries

Examples

(a)

(b)

Summary

- Simple methods for generating surfaces from curves
- Curves can be modeled any way we want
- Limited set of shapes

Tensor Product Surfaces
 Thinor prodart Suraces

More General Parametric Surfaces

- Use basis functions like for curves
- Apply independently to parametric directions s and t
- Works for arbitrary basis

Example:

- Bézier curve:

$$
F(t)=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}
$$

- Tensor product Bézier $\stackrel{i=0}{\mathrm{pa}}$ tch:

$$
F(s, t)=\sum_{i=0}^{m_{s}} \sum_{j=0}^{m_{t}} B_{i}^{m_{s}}(s) \cdot B_{j}^{m_{t}}(t) \cdot \mathbf{b}_{i, j} \text { enls sheferer }
$$

Tensor Product Surfaces

Notes:

- Surface is (rational) polynomial in s and t, depending on basis
- The degree in s is m_{s}
- The degree in t is m_{t}
- The total degree is $m_{s}+m_{t}$
- Algorithms from curves transfer directly to tensor product surfaces
- Properties of surfaces directly related to properties of corresponding curves

Tensor Product Surfaces

Properties (Bézier, B-Spline, Rational

 Bézier/B-Spline):- (Local) Convex hull
- Affine invariance
- Control points of the edge curves are the boundary points of the control mesh
- Bézier patch interpolates corner vertices of its control mesh

Tensor Product Surfaces

Continuity

- Two patches

$$
\begin{aligned}
& F(s, t):\left[s_{0}, s_{1}\right] \times\left[t_{0}, t_{1}\right], \\
& G(s, t):\left[s_{1}, s_{2}\right] \times\left[t_{0}, t_{1}\right]
\end{aligned}
$$

- are C^{k} continuous if for all t

$$
F^{(l)}(s, t)=G^{(l)}(s, t) ; l \leq k
$$

- Same for s
- Special case - two patches sharing one corner

Tensor Product Surfaces

Limitations:

- Total degree is sum of degrees in s and t
- Always parameterized over rectangular parameter interval
- Refinement (degree elevation or knot insertion) always affects a whole row or column

Tensor Product Surfaces

Limitations: "suitcase corners"

