Syllabus

Curves in 2D and 3D

- ...
- Subdivision Curves

Properties of Curves and Surfaces

- Differential Geometry:
- arc length
- curvature
- Frenet frame

Surfaces

Motivation

Parameterization:

- Curve representations we have looked at have fixed parameterization
- Bézier
- B-Spline
- Rational
- Indicates fixed speed for point traveling along the curve

Want:

- Change speed without affecting shape

Motivation

Continuity between curves

- So far included parameterizations
- Speed wrt to input parameter
- Example:
- Bézier continuity constraints depend on relative interval lengths

Want:

- Geometric concept for continuity that ignores parameterization

Motivation

Differential Geometry helps to:

- Understand parameterizations
- Understand impact of parameterizations on derivatives
- Tangent vector, curvature, ...
- Change parameterization as required
- Derive geometric definition of continuity

For our purposes:

- Look at 3D curves
- 2D as special case

Regularity

Definition:

- Differentiable parametric curve $F(t):[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}^{3}$ is called regular if

$$
F^{\prime}(t) \neq 0, \forall t \in[a, b]
$$

- (I.e. if the tangent vector is not 0 anywhere)

Note:

- Bézier curves not necessarily regular...

Not Regular Bezier Curve

Equivalence/Reparameterization

Definition

- Two regular curves

$$
F(t):[a, b] \rightarrow \mathbb{R}^{3} \text { and } G(t):[c, d] \rightarrow \mathbb{R}^{3}
$$

are geometrically equivalent $F \cong G$ if there is a strictly monotonic, differentiable function

$$
\phi(t):[a, b] \rightarrow[c, d]
$$

with

$$
F(t)=G(\phi(t))
$$

Equivalence/Reparameterization

Equivalence/Reparameterization

Are the curves

$$
F(t)=(2 \cos t, 2 \sin t) t \in[0, \pi]
$$

and

$$
G(s)=\left(s, \sqrt{4-s^{2}}\right) s \in[-2,2]
$$

geometrically equivalent?

$$
\phi(t)=?
$$

Arc Length

Definition

- Arc length of regular curve $F(t):[a, b] \rightarrow \mathbb{R}^{3}$ given as

$$
s(t):=\int_{a}^{t}\left\|F^{\prime}(\tilde{t})\right\| d \tilde{t}
$$

Parameterization by arc length

$$
G(s) \text { with } G(s(t))=F(t)
$$

- Note: this is a canonical representation for any curve
- Point is traveling along G with constant speed 1

Arc Length Example (on board)

$F(t)=(t, t) t \in[0,1]$
$F^{\prime}(t)=? \quad s(t):=\int_{a}^{t}\left\|F^{\prime}(\tilde{t})\right\| d \tilde{t}$
$F(t)=(\sin (t), \cos (t)) t \in[0, \pi]$
$F^{\prime}(t)=$?
$s(t)=? \quad G(s)=?$

Do at home

$$
\begin{aligned}
& F(t)=\left(1+\frac{3}{2} t,(t-1)^{3 / 2}\right) t \in[1,2] \\
& F^{\prime}(t)=? \quad s(t)=? \quad G(s)=?
\end{aligned}
$$

Curvature

Definition

- Let G be a curve parameterized by arc length
- We introduce the following terms:
- Unit tangent $\quad T(s):=G^{\prime}(s)$
- Curvature vector $K(s):=G^{\prime \prime}(s)$
- Curvature $\quad \kappa(s):=\|K(s)\|$
- Principal normal $\quad N(s):=\frac{K(s)}{\kappa(s)}$
- Up to orientation...(may need to flip for consistent frame)
- Binormal

$$
B(s):=T(s) \times N(s)
$$

General Setting

- To translate into general parameterization use derivation rules
- e.g. Unit tangent $T(t):=\frac{d G}{d s}=\frac{d F}{d t} \frac{d t}{d s}=\frac{F^{\prime}}{\left\|F^{\prime}\right\|}$

Curvature

- General parameterization (2D)
$k(t)=\frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}$
Corresponds to radius of osculating circle $R=1 / k$

Measure curve bending

Frenet Frame

Theorem:

- Curvature vector and tangent vector are perpendicular:

$$
K(s) \perp T(s)
$$

Note:

- Therefore, T, N, and B form an orthonormal coordinate frame
- This is called the Frenet Frame

Torsion

Note:

- B^{\prime} is the torsion vector
- τ is the torsion, and indicates how much the curve twists out of the plane ($\tau=0$ means perfectly planar)

Fundamental Theorem of Curves

Theorem:

- For given functions $\kappa(s), \tau(s)$ there exists exactly one (except for rotations and translations) unique curve that is parameterized by arc length and has curvature $\kappa(s)$, and torsion $\tau(s)$
Proof:
- Quite complex, see for example
- Da Carmo

Differential Geometry of Curves and Surfaces

Clothoids

© Alla Sheffer\& Wolfgang Heidrich

Clothoids: Sketching

Bonus Question [1\%]

Plot (use software of your choice) a 2D curve whose curvature changes linearly from -10 to 10

5 first correct answers will get the bonus

Geometric Continuity

Definition:

- Two curves

$$
F_{1}(t):[a, b] \rightarrow \mathbb{R}^{3} \text { and } F_{2}(t):[b, c] \rightarrow \mathbb{R}^{3}
$$

are G^{k}-continuous (geometrically continuous of degree k) if there are reparameterizations

$$
G_{1}(t) \cong F_{1}(t) \text { and } G_{2}(t) \cong F_{2}(t)
$$

that are C^{k} continuous, i.e.:

$$
G_{1}^{l}(t)=G_{2}^{l}(t), \quad l=0 \ldots k
$$

at shared parameter interval endpoint

Geometric Continuity

Note:

- In practice, if two curves are G^{k} continuous, then there always is a reparameterization for F_{2} that is C^{k} continuous to F_{1}
- I.e. only one of the two curves needs to be reparameterized
- If we reparameterize both curves, we can normalize the tangent vector at the transition point to unit length - Local arc length parameterization

Real-life problems - Curves

- Reconstruction: given (many) points sampled from smooth (or not) curve find Bspline/NURBS/Bezier/other curve that interpolates/approximates input points
- use A LOT less control then input points
- optimize "fairness" (e.g. integral squared curvature)
- support noise/outliers
- Minimize number of spline segments

Real-life problems - Curves

Fairing: given manually drawn (noisy) curve recover artist intended clean curve

[Baran'2010]

UBC䜌

Real-life problems - curves

Fitting to stroke clusters/consolidation

[Pagurek'20]

Real-life problems - Curves

Editing: given B-spline/NURBS/Bezier/other curve provide simple way for user to deform it

- allow to pick random point on curve and pull it so the rest follows in intuitive manner
- Modeling: intuitive way to form desired curves
- more "user-friendly" then control-point editing

