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Properties of Curves and Surfaces
- Differential Geometry:

— arc length

— curvature

— Frenet frame

Surfaces
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< Curve representations
we have looked at have
fixed parameterization

— Bézier
— B-Spline
— Rational

* Indicates fixed
speed for point
traveling along the curve

Want:
+ Change speed without affecting shape
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« So far included parameterizations
-~ Speed wrt to input parameter
« Example:

— Bézier continuity constraints depend on relative
interval lengths

Want:

+ Geometric concept for continuity that ignores
parameterization
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Motivation

Differential Geometry helps to:
Understand parameterizations

Understand impact of parameterizations on
derivatives

Tangent vector, curvature, ...
Change parameterization as required
Derive geometric definition of continuity

For our purposes:
Look at 3D curves
2D as special case
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Regularity
Definition:

Differentiable parametric curve F(t): [a,b] » R3
is called regular if

F'(t) #0,Vt € [a, b]
(I.e. if the tangent vector is not 0 anywhere)

Note:
Bézier curves not necessarily regular...
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are geometrically equivalent F = G if there is a strictly
monotonic, differentiable function

¢(t):[a, b] = [c, d]

with
F(©) =G(¢p(D)
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- M(t} d
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G(s) =(s,V4—5?) s€[-2,2]
geometrically equivalent?

¢() =?
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Arc Length

Definition
Arc length of regular curve F(t): [a, b] - R3 given as

t
s©) = [ IF @Il d
Parameterization by arc length

G(s) with G(S(t)) = F(t)

Note: this is a canonical representation for any curve
Point is traveling along G with constant speed 1
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Arc Length Example (on board)
F(t) =(t,t) t €[0,1]
F'(t) =? s(@®) = [JIF'@®| dt

F(t) = (sin(t),cos(t)) t € [0, 7]
F'(t) =?

s(t) =? G(s) =2

© Alla Sheffer& Wolfgang Heidrich




© Alla Sheffer& Wolfgang Heidrich|

— Unit tangent T(s) = G'(s)

— Curvature vector K(s) == G'"(s)

— Curvature k(s) == ||K(s)||
K(s)

— Principal normal  N(s) = s

* Up to orientation...(may need to flip for
consistent frame)

— Binormal B(s) =T(s) X N(s)
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Corresponds to radius of
osculating circle R = 1/k

Measure curve bending

c(t)
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Note:

* Therefore, T, N, and B form an orthonormal
coordinate frame

* This is called the Frenet Frame
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Note:
« B’is the torsion vector

« 7 is the torsion, and indicates how much the curve
twists out of the plane (t = 0 means perfectly planar)

© Alla Sheffer& Wolfgang Heidrich|




Fundamental Theorem of Curves

Theorem:

For given functions «k(s), t(s) there exists exactly one
(except for rotations and translations) unique curve
that is parameterized by arc length and has curvature
k(s), and torsion t(s)

Proof:

Quite complex, see for example

Da Carmo
Differential Geometry of Curves and Surfaces
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Clothoids

0.5

-0.5
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5 first correct answers will get the bonus
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Geometric Continuity

Definition:
Two curves
F;(t):[a,b] » R3 and F,(t):[b,c] - R3

are G*-continuous (geometrically continuous of
degree k) if there are reparameterizations

G,(t) = F,(t) and G,(t) = F,(t)
that are C* continuous, i.e.:
Gi(t)=Gi(t), 1=0..k

at shared parameter interval endpoint
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Geometric Continuity

Note:

In practice, if two curves are G* continuous, then there
always is a reparameterization for F, that is C*
continuous to F,

l.e. only one of the two curves needs to be
reparameterized

If we reparameterize both curves, we can normalize
the tangent vector at the transition point to unit length

Local arc length parameterization
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Real-life problems - Curves

Reconstruction: given (many) points sampled from
smooth (or not) curve find B-
spline/NURBS/Bezier/other curve that
interpolates/approximates input points

use A LOT less control then input points

optimize “fairness” (e.q. integral squared curvature)
support noise/outliers

Minimize number of spline segments
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Real-life problems - Curves

Fairing: given manually
drawn (noisy) curve recover
artist intended clean curve

,) L
/) () )\//O

[Baran’2010] .,/ — — U~

© Alla Sheffer& Wolfgang Heidrich

13



Real-life problems - curves

Fitting to stroke clusters/consolidation

StrokeStrip

[Pagurek’20]
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Real-life problems - Curves

Editing: given B-spline/NURBS/Bezier/other curve
provide simple way for user to deform it

allow to pick random point on curve and pull it so
the rest follows in intuitive manner

Modeling: intuitive way to form desired curves
more “user-friendly” then control-point editing
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Fig. 2. Comparison of our result with other C? curves. From left to right: 6-point interpolatory subdivision curve [Deslauriers and Dubuc 1989], C? Catmull-Rom
spline [Catmull and Rom 1974], C? interpolating cubic B-spline [Farin 2002], our curve.
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