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CPSC 424
B-Splines
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Syllabus

Curves in 2D and 3D
• Implicit vs. Explicit vs. Parametric curves

• Bézier curves

• Continuity, 

• B-Splines

• Subdivision Curves

Properties of Curves and Surfaces

Surfaces
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B-Splines

Problem with Bézier continuity:
• Use more control points than degrees of freedom if 

we want continuity

– Require users to think about “correct” control 
placement

Idea:
• Use different Basis (piece-wise polynomial)
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B-Splines

Idea: Generate basis where functions are 
continuous cross domains 

Control point controls set of basis functions 
(to preserve continuity) 

Alternative view: continuous basis functions 
defined on several domains 
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Uniform Cubic B-Spline Curves
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Uniform Cubic B-Spline Curves

For any t  [3,n] 

For any t  [j,j+1] only 4 basis functions are 
non zero

Any point on cubic B-Spline is affine 
combination of at most 4 control points 
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B-Splines do not interpolate any control 
points
• in particular end points

Way to force endpoint interpolation:
• Let                         and same for other end

Question: 
• What is the shape of the curve at endpoints if this 

method is used ?

Boundary Conditions for B-Splines

P P P0 1 2 

© Alla Sheffer & Wolfgang Heidrich

B-Splines

Direct recursion formula:

Note:
• Not  an affine combination
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Normalized B-Splines

Theorem (“partition of 1”):
• The B-Spline basis functions sum to 1

Why is this so important?
• When we define curves using this basis:

then the weights of the control points sum up to 1
• Therefore: the curve is an affine combination of the 

control points
• This means affine invariance!
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NURBs
B-Spline

Non-Uniform – different interval lengths 
(knots)
Rational – rational basis functions
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