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CPSC 424
Degree Elevation and Continuity
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Midterm date: October 7

Material: Curves 
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Clicker Question

Can a circle be described using an explicit
representation?

A. Yes
B. No
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Syllabus

Curves in 2D and 3D
• Implicit vs. Explicit vs. Parametric curves

• Bézier curves, de Casteljau algorithm

• Bézier subdivision, degree elevation

• Continuity, B-Splines

• Subdivision Curves

Properties of Curves and Surfaces

Surfaces
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De Casteljau Algorithm, Again

Evaluation scheme (cubic case, t=1/2):
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Observation

De Casteljau generates 2 new control 
polygons!

• For parameter interval [0,1/2], and [1/2,1]

• Can be used to recursively subdivide control polygon

• Can you prove it? 
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Subdivision Example

Cubic case:
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Subdivision Algorithm

Algorithm:
• Recursively subdivide control polygon at center of  

parameter interval

• Resulting control polygons converge to actual curve

Theorem (proof in book, Section 5.2): :
• Convergence is very fast

– for n subdivision steps, the error (maximum 
distance between control polygons and curve) is

for some constant c

n
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Derivatives of Bézier Curves

Theorem (proof on board):
• The derivative of a Bézier curve

is given as
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Derivatives on Bézier Curves

Note:
• In particular, derivative can itself be interpreted as 

Bézier curve

• Control “points” of this “curve” are really vectors 
(directions)

• With this theorem we have finally shown that a Bézier
curve is tangential in the control polygon at is first and 
last vertex.
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Problem: how to describe long 
curves?

Using high-order Bezier curve = 
approximation quality dimineshes
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Splines

Concept:
• Provide local control by piecing together multiple 

(polynomial) curves in  smooth fashion

• This is called Spline

• Like with polynomial curves there are multiple 
representations, e.g.:

– Hermite Spline (week 2)

– B-Spline (next lecture?)
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Splines in power point
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Splines

Problem:
• How do we ensure smooth (continuous) transition 

between segments?

Several approaches:
• Use Bézier curves, but restrict location of some 

control points

– User has to do “The Right Thing”™
(can be made transparent)

• Use representation in which continuity is implicitly 
guaranteed

– B-Splines
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Continuity

Tangent Vector of Parametric Curve:
• Given by its derivative (here: 3D):

• Example (2D explicit curve):
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Continuity

Note:
• This is a tangent vector, not a tangent direction

• This vector has a length

– Represents speed of an object moving along the 
curve
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Continuity

Def:
• A curve F(t) is called Ck-continuous if its kth derivative 

F(k)(t) exists (i.e. is continuous) everywhere

Note:
• Polynomial curves are infinitely continuous

Def:
• Two curve segments F(t) defined over [t,t0] and G(t) 

defined over [t0,t’] are called Ck-continuous at t0 if their 
first k derivatives match at t0

– Definition extends to cases with “shifted” parameter 
intervals F(t) and G(t) are called Ck-continuous if at 
if first k derivatives of F(t) at t0 match first k 
derivatives of G(t) at t1
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Continuity

Examples:
• C0-continuous: F(t0) = G(t0)

– I.e. the curves meet in one point for the same 
parameter value

• C1-continuous: F(t0) = G(t0) and F’(t0) = G’(t0) 

– They meet and have the same tangent vector

– Note: both direction and length of vector are 
important!

• C2-continuous: in addition F’’(t0) = G’’(t0)

– Curvatures match as well

• …
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C1  and C2 continuity
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C1  and C2 continuity
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C1  and C2 continuity
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Bezier Continuity

• C0 :  share end control points bm=b’0

• C1 : bm – bm-1 = b’1 – b’0

• G1 : bm – bm-1 collinear to  b’1 – b’0
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Examples (on board)
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Continuity Between Bézier Curves

Remarks:
• For Ck – continuity, the first (k+1) control points of G(t) 

are fixed

– Given as affine combinations of the control points 
of F(t)

– NOT: convex combinations
There will be coefficients >1 and <0
Extrapolation rather than interpolation


