

Syllabus

Curves in 2D and 3D

- Implicit vs. Explicit vs. Parametric curves
- Bézier curves, de Casteljau algorithm
- Continuity
- B-Splines
- Subdivision Curves

Properties of Curves and Surfaces

Surfaces

Bézier Curves

Definition:

- Bézier curve is a polynomial curve that uses Bernstein polynomials as basis

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t) \quad \boldsymbol{t} \in[\mathbf{0}, \mathbf{1}]
$$

- b_{i} are called control points of Bézier curve
- Control polygon obtained by connecting control points with line segments

Bernstein Polynomials

$$
\begin{aligned}
& B_{i}^{m}(t):=\binom{m}{i} t^{i}(1-t)^{m-i} ; i=0 . . m ; t \in[0,1], \\
& \binom{m}{i}=\frac{m!}{(m-i)!i!}
\end{aligned}
$$

Bézier Curves - Polynomials

Bernstein Polynomials

$$
B_{i}^{m}(t):=\binom{m}{i} t^{i}(1-t)^{m-i} ; i=0 . . m ; t \in[0,1]
$$

- Graph for degree $\mathrm{m}=3$:

Bernstein Polynomials

$$
B_{i}^{m}(t):=\binom{m}{i} t^{i}(1-t)^{m-i} ; i=0 . . m ; t \in[0,1]
$$

Properties:

- $B_{i}^{m}(t)$ is a polynomial of degree m
- $B_{i}^{m}(t) \geq 0$ for $t \in[0,1] ; B_{0}^{m}(0)=1 ; B_{i}^{m}(0)=0$ for $i \neq 0$
- $B_{i}^{m}(t)=B_{m-i}^{m}(1-t)$

Bernstein Polynomials

$$
B_{i}^{m}(t):=\binom{m}{i} t^{i}(1-t)^{m-i} ; i=0 . . m ; t \in[0,1]
$$

Properties:

- $\mathrm{B}_{\mathrm{i}}{ }^{\mathrm{m}}(\mathrm{t})$ has exactly one maximum in the interval $0 . .1$. It is at $\mathrm{t}=\mathrm{i} / \mathrm{m}$ (proof: compute derivative...)
- W/o proof: all $(m+1)$ functions B_{i}^{m} are linearly independent
- Thus they form a basis for all polynomials of degree $\leq m$

Bernstein Polynomials

More properties

- $\sum_{i=0}^{m} B_{i}^{m}(t)=(t+(1-t))^{m} \equiv 1$
- (proof: apply Binomial Theorem to definition)
- $B_{i}^{m}(t)=t \cdot B_{i-1}^{m-1}(t)+(1-t) \cdot B_{i}^{m-1}(t)$
- (proof on board)
- Important (later) for fast evaluation algorithm of Bézier curves (de Casteljau algorithm)

Bézier Curves

Definition:

- A Bézier curve is a polynomial curve that uses the Bernstein polynomials as a basis

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)
$$

- b_{i} are called control points of Bézier curve
- Control polygon obtained by connecting control points with line segments
- Examples: https://www.ibiblio.org/enotes/Splines/bezier.html

Clicker Question

For a Bezier curve with 4 control points positioned along a horizontal line. If I move the first point up, will the curve between two last points
A. Move up
B. Move down
C. Stay where it was
D. No idea

Bézier Curves

Definition:

- A Bézier curve is a polynomial curve that uses the Bernstein polynomials as a basis

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)
$$

Advantage of Bézier curves:

- Control points \& control polygon have clear geometric meaning and are intuitive to use

Properties of Bézier Curves (Pierre Bézier, Renault, about 1970)

Easy to see:

- Endpoints b_{0} and b_{m} of control polygon interpolated \& corresponding parameter values are $\mathrm{t}=0$ and $\mathrm{t}=1$
Less easy: Curve is affine invariant
- Affine invariant: invariant under linear transformations + translation
- Transforming control points = Transforming curve

Convex Combination

Convex Combination

$$
\sum_{i} \lambda_{i} \mathbf{x}_{i}, \quad \sum_{i} \lambda_{i}=1, \quad \lambda_{i} \geq 0
$$

Special case

$$
t x_{0}+(1-t) \mathrm{x}_{1}
$$

Convex Combination

Convex Combination

$$
\sum_{i} \lambda_{i} \mathbf{x}_{i}, \quad \sum_{i} \lambda_{i}=1, \quad \lambda_{i} \geq 0
$$

Def: Convex Hull

- The convex hull $\left[x_{\mathrm{i}}\right]$ of a set of points x_{i} is the set of points that can be expressed as convex combinations of the x_{i} :

$$
\left[x_{i}\right]:=\left\{\sum_{i} \lambda_{i} \mathbf{x}_{i} \mid \sum_{i} \lambda_{i}=1 ; \quad \lambda_{i} \geq 0\right\}
$$

Convex Hulls

Clicker

Which of the following are convex: sphere, torus, cube, cow?
A. All
B. None
C. Sphere and torus
D. Sphere and cube
E. Cow

Back to Bézier Curves

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)
$$

Recall:

- Bernstein polynomials have values between 0 and 1 for $t \in[0,1]$, and $\sum_{i=0}^{m} B_{i}^{m}(t) \equiv 1$
- Therefore: every point on Bézier curve is convex combination of control points
- Therefore: Bézier curve lies completely within convex hull of control points

Properties of Bézier Curves

 (Pierre Bézier, Renault, about 1970)Without proof for the moment (will be easier to show later):

- Bézier curve is tangential to control polygon at endpoints
- There is a fast, recursive evaluation algorithm

Lagrange v.s. Bezier

Lagrange

Basis: Lagrange Polynomials

$$
L_{i}^{m}(t):=\prod_{j=0 ., m, j i t i} \frac{t-t_{j}}{t_{i}-t_{j}} ; i=0 \ldots m
$$

Spline:

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} L_{i}^{m}\left(t_{j}\right)
$$

Interpolates control points Hard to control ("wiggles")

Bezier
Basis: Bernstein Polynomials

$$
B_{i}^{m}(t):=\left(\begin{array}{l}
m \\
i
\end{array} t^{i}(1-t)^{m-1} ; i=0 . . m ; t \in[0,1]\right.
$$

Spline:

$$
F(t)=\sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)
$$

Approximates control points
Easy to control (more or less)

De Casteljau Algorithm

Recall:

- Recursive formula for Bernstein polynomials (what about $\mathrm{i}=0$ or $\mathrm{i}=\mathrm{m}$?):

$$
B_{i}^{m}(t)=t \cdot B_{i-1}^{m-1}(t)+(1-t) \cdot B_{i}^{m-1}(t)
$$

Plug into Bézier curve definition (on board):

$$
\begin{aligned}
F(t) & =\sum_{i=0}^{m} \mathbf{b}_{i}\left(t \cdot B_{i-1}^{m-1}(t)+(1-t) \cdot B_{i}^{m-1}(t)\right) \\
& =t \cdot \sum_{i=1}^{m} \mathbf{b}_{i} B_{i-1}^{m-1}(t)+(1-t) \cdot \sum_{i=0}^{m-1} \mathbf{b}_{i} B_{i}^{m-1}(t)
\end{aligned}
$$

De Casteljau Algorithm

Consequence:

- Every point $F\left(t_{0}\right)$ on a Bézier curve of degree m is the convex combination of two points $G\left(t_{0}\right)$ and $H\left(t_{0}\right)$ that lie on Bézier curves of degree $\mathrm{m}-1$.
- The control points of $G(t)$ are the first m control points of $F(t)$
- The control points of $H(t)$ are the last m control points of $F(t)$

De Casteljau Algorithm

Recursion:

- Every point on a Bézier curve can be generated through successive convex combinations of the degree 0 Bézier curves
- Degree 0 Bézier curves are the control points!

$$
F(t)=\sum_{i=0}^{0} \mathbf{b}_{i} B_{i}^{0}(t)=\mathbf{b}_{i} \cdot 1 \equiv \mathbf{b}_{i}
$$

De Casteljau Algorithm

After working out the math we get:

$$
\begin{aligned}
& F(t)=\mathbf{b}_{0}^{m}(t) ; \text { where } \\
& \mathbf{b}_{i}^{0}(t):=\mathbf{b}_{i} ; \quad i=0 \ldots m \\
& \mathbf{b}_{i}^{l}(t):=(1-t) \cdot \mathbf{b}_{i}^{l-1}(t)+t \cdot \mathbf{b}_{i+1}^{l-1}(t)
\end{aligned}
$$

De Casteljau Algorithm

Graphical Interpretation:

- Determine point $F(1 / 2)$ for the cubic Bézier curve given by the following four points:

De Casteljau Algorithm

Evaluation scheme (cubic case):

Observation

De Casteljau generates 2 new control

 polygons!- For parameter interval [0,1/2], and [1/2,1]
- Can be used to recursively subdivide control polygon
- Can you prove it?

Subdivision Algorithm

Algorithm:

- Recursively subdivide control polygon at center of parameter interval
- Resulting control polygons converge to actual curve Theorem (proof in book, Section 5.2):
- Convergence is very fast
- for n subdivision steps, the error (maximum distance between control polygons and curve) is

$$
\varepsilon<\frac{c}{2^{n}}
$$

for some constant c

Degree Elevation

Motivation:

- Sometimes necessary to view curve of degree m as curve of degree $\mathrm{m}+1$ or higher
- Control points of degree m Bézier curve can be geometrically converted into degree $(m+1)$ control points for same curve

Degree Elevation

Replace degree m polynomial ($m+1$ control points) with degree $m+1$ polynomial ($m+2$ control points):

- New control points b' ${ }_{\mathrm{i}}$:

$$
\mathbf{b}_{i}^{\prime}=\frac{1}{m+1}\left[i \cdot \mathbf{b}_{i-1}+(m+1-i) \mathbf{b}_{i}\right]
$$

Degree Elevation

Examples:

m=2

$\mathrm{m}=3$

Derivatives of Bézier Curves

Theorem (proof on board):

- The derivative of a Bézier curve

$$
F(t):=\sum_{i=0}^{m} B_{i}^{m}(t) \cdot \mathbf{b}_{i}
$$

is given as

$$
F^{\prime}(t):=m \cdot \sum_{i=0}^{m-1} B_{i}^{m-1}(t) \cdot\left(\mathbf{b}_{i+1}-\mathbf{b}_{i}\right)
$$

