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CPSC 424
Affine Combinations,

de Casteljau Algorithm
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Syllabus

Curves in 2D and 3D
• Implicit vs. Explicit vs. Parametric curves

• Bézier curves, de Casteljau algorithm

• Continuity

• B-Splines

• Subdivision Curves

Properties of Curves and Surfaces

Surfaces
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Bézier Curves

Definition:
• Bézier curve is a polynomial curve that uses 

Bernstein polynomials as basis

• bi are called control points of Bézier curve

• Control polygon obtained by connecting control points 
with line segments
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Bernstein Polynomials
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Bézier Curves - Polynomials

Bernstein Polynomials

• Graph for degree m=3:
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Bernstein Polynomials

Properties:
• Bi

m(t) is a polynomial of degree m

•

• Bi
m(t)= Bm-i

m(1-t)
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m(t)  0 for t  [0,1];B0

m(0) 1;Bi
m(0)  0 for i  0
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Bernstein Polynomials

Properties:

• Bi
m(t) has exactly one maximum in the interval 0..1. It 

is at t=i/m (proof: compute derivative…)

• W/o proof: all (m+1) functions Bi
m are linearly 

independent
– Thus they form a basis for all polynomials of 

degree  m
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Bernstein Polynomials

More properties
•

– (proof: apply Binomial Theorem to definition)

•

– (proof on board)

• Important (later) for fast evaluation algorithm of Bézier
curves (de Casteljau algorithm)
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Bézier Curves

Definition:
• A Bézier curve is a polynomial curve that uses the 

Bernstein polynomials as a basis

• bi are called control points of Bézier curve

• Control polygon obtained by connecting control points 
with line segments

• Examples: https://www.ibiblio.org/e-
notes/Splines/bezier.html





m

i

m
ii tBtF

0

)()( b

© Wolfgang Heidrich & Alla Sheffer

Clicker Question

For a Bezier curve with 4 control points  
positioned along a horizontal line. If I 
move the first point up, will the curve 
between two last points

A. Move up

B. Move down

C. Stay where it was

D. No idea
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Bézier Curves

Definition:
• A Bézier curve is a polynomial curve that uses the 

Bernstein polynomials as a basis

Advantage of Bézier curves:
• Control points & control polygon have clear geometric 

meaning and are intuitive to use
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Properties of Bézier Curves
(Pierre Bézier, Renault, about 1970)

Easy to see:
• Endpoints b0 and bm of control polygon interpolated & 

corresponding parameter values are t=0 and t=1

Less easy: Curve is affine invariant
• Affine invariant: invariant under linear transformations 

+ translation

• Transforming control points = Transforming curve
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Convex Combination
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Convex Combination

Convex Combination

Def: Convex Hull
• The convex hull [xi] of a set of points xi is the set of 

points that can be expressed as convex combinations 
of the xi:
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Convex Hulls
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Convex Hulls
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Clicker

Which of the following are convex: sphere,
torus, cube, cow?

A. All
B. None
C. Sphere and torus
D. Sphere and cube
E. Cow 
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Back to Bézier Curves

Recall:
• Bernstein polynomials have values between 0 and 1 

for t[0,1], and

– Therefore: every point on Bézier curve is convex 
combination of control points

– Therefore: Bézier curve lies completely within 
convex hull of control points
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Properties of Bézier Curves
(Pierre Bézier, Renault, about 1970)

Without proof for the moment (will be easier 
to show later):
• Bézier curve is tangential to control polygon at 

endpoints

• There is a fast, recursive evaluation algorithm
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Lagrange v.s. Bezier

Lagrange

Basis: Lagrange Polynomials

Spline:

Interpolates control points

Hard to control (“wiggles”)

Bezier

Basis: Bernstein Polynomials

Spline:

Approximates control 
points

Easy to control (more or 
less)
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De Casteljau Algorithm

Recall:
• Recursive formula for Bernstein polynomials (what 

about i=0 or i=m?):

Plug into Bézier curve definition (on board):
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De Casteljau Algorithm

Consequence:

• Every point F(t0) on a Bézier curve of degree m is the 
convex combination of two points G(t0) and H(t0) that 
lie on Bézier curves of degree m-1.

• The control points of G(t) are the first m control points 
of F(t)

• The control points of H(t) are the last m control points 
of F(t)
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De Casteljau Algorithm

Recursion:
• Every point on a Bézier curve can be generated 

through successive convex combinations of the 
degree 0 Bézier curves

• Degree 0 Bézier curves are the control points!
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De Casteljau Algorithm

After working out the math we get:
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De Casteljau Algorithm

Graphical Interpretation:
• Determine point F(1/2) for the cubic Bézier curve 

given by the following four points:
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De Casteljau Algorithm

Evaluation scheme (cubic case):
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Observation

De Casteljau generates 2 new control 
polygons!

• For parameter interval [0,1/2], and [1/2,1]

• Can be used to recursively subdivide control polygon

• Can you prove it? 
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Example

Cubic case:
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Subdivision Algorithm

Algorithm:
• Recursively subdivide control polygon at center of  

parameter interval

• Resulting control polygons converge to actual curve

Theorem (proof in book, Section 5.2):
• Convergence is very fast

– for n subdivision steps, the error (maximum 
distance between control polygons and curve) is

for some constant c
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Degree Elevation

Motivation:
• Sometimes necessary to view curve of degree m as  

curve of degree m+1 or higher

• Control points of degree m Bézier curve can be 
geometrically converted into degree (m+1) control 
points for same curve
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Degree Elevation

Replace  degree m polynomial (m+1 control 
points)  with degree m+1 polynomial (m+2 
control points):

• New control points b’i: 
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Degree Elevation

Examples:

m=2 m=3
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Derivatives of Bézier Curves

Theorem (proof on board):
• The derivative of a Bézier curve

is given as
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