CPSC 424 Assignment 4

Term: September 2022, Instructor: Alla Sheffer, sheffa@cs.ubc.ca, http://www.ugrad.cs.ubc.ca/ cs424

Due: November 2, 2022 in class

Assignment 4.1: Subdivision Curves (15 Points)

Given a closed polygon defined by the sequence of points $P_{i}=\left(p_{1}^{i}, p_{2}^{i}, \ldots, p_{n}^{i}\right)$, consider the following subdivision scheme that generates after one step of subdivision the polygon $P_{i+1}=$ $\left(p_{1}^{i+1}, p_{2}^{i+1}, \ldots, p_{2 n}^{i+1}\right)$ using the following subdivision rules:

- $p_{2 j-1}^{i+1}=\frac{1}{6} p_{j-1}^{i}+\frac{2}{3} p_{j}^{i}+\frac{1}{6} p_{j+1}^{i}$
- $p_{2 j}^{i+1}=\frac{1}{2} p_{j}^{i}+\frac{1}{2} p_{j+1}^{i}$
(Note that if $j=1$, then $j-1$ becomes n, and if $j=n$, then $j+1$ becomes 1)
a) Perform 2 levels of subdivision starting from the triangle in the figure below. Be as accurate as possible and write down the exact positions of each point.

$$
\mathrm{P} 1=(0,0), \mathrm{P} 2=(2,0), \mathrm{P} 3=(1,1)
$$

Level 1:

$$
\begin{gathered}
P_{1}^{1}=\frac{1}{6} P_{3}^{0}+\frac{2}{3} P_{1}^{0}+\frac{1}{6} P_{2}^{0}=\left(\frac{1}{2}, \frac{1}{6}\right)^{T} \\
P_{2}^{1}=\frac{1}{2} P_{1}^{0}+\frac{1}{2} P_{2}^{0}=(1,0)^{T} \\
P_{3}^{1}=\frac{1}{6} P_{1}^{0}+\frac{2}{3} P_{2}^{0}+\frac{1}{6} P_{3}^{0}=\left(\frac{3}{2}, \frac{1}{6}\right)^{T} \\
P_{4}^{1}=\frac{1}{2} P_{2}^{0}+\frac{1}{2} P_{3}^{0}=\left(\frac{3}{2}, \frac{1}{2}\right)^{T} \\
P_{5}^{1}=\frac{1}{6} P_{2}^{0}+\frac{2}{3} P_{3}^{0}+\frac{1}{6} P_{1}^{0}=\left(1, \frac{2}{3}\right)^{T} \\
P_{6}^{1}=\frac{1}{2} P_{3}^{0}+\frac{1}{2} P_{1}^{0}=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}
\end{gathered}
$$

Level 2:

$$
\begin{gathered}
P_{1}^{2}=\frac{1}{6} P_{6}^{0}+\frac{2}{3} P_{1}^{0}+\frac{1}{6} P_{2}^{0}=\left(\frac{7}{12}, \frac{7}{36}\right)^{T} \\
P_{2}^{2}=\frac{1}{2} P_{1}^{0}+\frac{1}{2} P_{2}^{0}=\left(\frac{3}{4}, \frac{1}{12}\right)^{T} \\
P_{3}^{2}=\frac{1}{6} P_{1}^{0}+\frac{2}{3} P_{2}^{0}+\frac{1}{6} P_{3}^{0}=\left(1, \frac{1}{18}\right)^{T} \\
P_{4}^{2}=\frac{1}{2} P_{2}^{0}+\frac{1}{2} P_{3}^{0}=\left(\frac{5}{4}, \frac{1}{12}\right)^{T} P_{2}^{0}+\frac{2}{3} P_{3}^{0}+\frac{1}{6} P_{4}^{0}=\left(\frac{17}{12}, \frac{7}{36}\right)^{T} \\
P_{6}^{2}=\frac{1}{2} P_{3}^{0}+\frac{1}{2} P_{4}^{0}=\left(\frac{3}{2}, \frac{1}{3}\right)^{T} \\
P_{1} 2^{2}=\frac{1}{2} P_{6}^{0}+\frac{1}{2} P_{1}^{0}=\left(\frac{1}{2}, \frac{1}{3}\right)^{T} \\
P_{7}^{2}=\frac{1}{6} P_{3}^{0}+\frac{2}{3} P_{4}^{0}+\frac{1}{6} P_{5}^{0}=\left(\frac{17}{12}, \frac{17}{36}\right)^{T} \\
P_{9}^{0}+\frac{2}{3} P_{6}^{0}+\frac{1}{6} P_{1}^{0}=\left(\frac{7}{12}, \frac{17}{36}\right)^{T} \\
\left.P_{8}^{2}=\frac{1}{6} P_{4}^{0}+\frac{2}{3} P_{5}^{0}+\frac{1}{6} P_{6}^{0}+\frac{1}{2} P_{5}^{0}=\left(\frac{3}{4}, \frac{11}{18}\right)^{T}, \frac{7}{12}\right)^{T} \\
\left.P_{8}^{2}, \frac{11}{18}\right)^{T} \\
P_{8}^{2} \\
P_{5}^{2}
\end{gathered}
$$

Figure 1: Two levels of subdivision
b) Use the formulas above to define a subdivision matrix M relating $p_{2 j-2}^{1}, p_{2 j-1}^{1}, p_{2 j}^{1}$ to $p_{j-1}^{0}, p_{j}^{0}, p_{j+1}^{0}$

$$
\left[\begin{array}{c}
p_{2 j-2}^{1} \\
p_{2 j-1}^{1} \\
p_{2 j}^{1}
\end{array}\right]=\overbrace{\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 6 & 2 / 3 & 1 / 6 \\
0 & 1 / 2 & 1 / 2
\end{array}\right]}^{M}\left[\begin{array}{c}
p_{j-1}^{0} \\
p_{j}^{0} \\
p_{j+1}^{0}
\end{array}\right]
$$

c) Analyze the matrix M (use a computer algebra system such as MATLAB if necessary) to determine whether the scheme converges.

Find the eigenvalues of the the Matrix M.

$$
\lambda=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
\frac{1}{6}
\end{array}\right]
$$

$\lambda_{1}=1\left|\lambda_{2}\right|$ and $\left|\lambda_{3}\right|<1$
Thus, subdivision will converge.
d) Speculate what the positions and tangents will be at $\lim _{k \rightarrow \infty} p_{j \cdot 2^{k}}^{k}$ (limit control points corresponding to the original p_{j}). Use a computer algebra system if necessary. Sketch your results below - be as accurate as possible.

$$
\mathrm{P} 1=(0,0), \mathrm{P} 2=(2,0), \mathrm{P} 3=(1,1)
$$

Position:

If we find the three eigenvalues and eigenvectors of Matrix M :

$$
\begin{aligned}
M v_{1} & =\lambda_{1} v_{1} \\
M v_{2} & =\lambda_{1} v_{2} \\
M v_{3} & =\lambda_{1} v_{3}
\end{aligned}
$$

We can write them in a matrix form:

$$
M\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \lambda_{3} v_{3}
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

Or,

$$
M V=V \Lambda
$$

where Λ is the diagonal matrix of eigenvalues and V is the matrix of their corresponding eigenvectors.

Then for (here $M V=V \Lambda$),

$$
\begin{gathered}
A_{1}=M A_{0}=M V V^{-1} A_{0}=V \Lambda V^{-1} A_{0} \\
A_{2}=M A_{1}=M V \Lambda V^{-1} A_{0}=V \Lambda \Lambda V^{-1} A_{0}=V \Lambda^{2} V^{-1} A_{0} \\
\cdots \\
A_{j}=M^{j} A_{0}=V \Lambda^{j} V^{-1} A_{0} \\
A_{\infty}=\lim _{k \rightarrow \infty} M^{k} A_{0}=V \Lambda^{\infty} V^{-1} A_{0}
\end{gathered}
$$

We can write out V and Λ :

$$
\begin{aligned}
V & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -\frac{2}{3} \\
1 & -1 & 1
\end{array}\right] \\
\Lambda & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6}
\end{array}\right]
\end{aligned}
$$

Since $\lambda_{2}, \lambda_{3}<1$, they will vanish while k approach infinity.
Thus,

$$
\Lambda^{\infty}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Then

$$
\begin{gathered}
M^{\infty}=V \Lambda^{\infty} V^{-1}=\left[\begin{array}{ccc}
\frac{1}{5} & \frac{3}{5} & \frac{1}{5} \\
\frac{1}{5} & \frac{3}{5} & \frac{1}{5} \\
\frac{1}{5} & \frac{3}{5} & \frac{1}{5}
\end{array}\right] \\
A^{\infty}=M^{\infty} A_{0}
\end{gathered}
$$

Thus,
P_{1} will converge to $\left(\frac{3}{5}, \frac{1}{5}\right)$
P_{2} will converge to $\left(\frac{7}{5}, \frac{1}{5}\right)$
P_{3} will converge to $\left(1, \frac{3}{5}\right)$
Tangent:

$$
\begin{gathered}
A_{j}=\left[\begin{array}{ccc}
L_{j}^{x} & L_{j}^{y} & 1 \\
C_{j}^{x} & C_{j}^{y} & 1 \\
R_{j}^{x} & R_{j}^{y} & 1
\end{array}\right] \\
V_{j}^{-1}=\left[\begin{array}{cc}
u_{1}^{T} \\
u_{2}^{T} \\
u_{3}^{T}
\end{array}\right] \\
t_{j}=R_{j}-C_{j}=\left[\begin{array}{ll}
0 & -1 \\
1
\end{array}\right] A_{j}=d^{T} A_{j} \\
A_{j}=d^{T} V \Lambda^{j} V^{-1} A_{0}=d^{T}\left[v_{1} v_{2} v_{3}\right] \Lambda^{j} V^{-1} A_{0} \\
t_{j}=\left[d^{T} v_{1} d^{T} v_{2} d^{T} v_{3}\right]\left[\begin{array}{ccc}
\lambda_{1}^{j} & 0 & 0 \\
0 & \lambda_{2}^{j} & 0 \\
0 & 0 & \lambda_{3}^{j}
\end{array}\right] V^{-1} A_{0}
\end{gathered}
$$

let,

$$
\left[d^{T} v_{1} d^{T} v_{2} d^{T} v_{3}\right]=\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right]
$$

Then,

$$
\begin{gathered}
t_{j}=\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1}^{j} & 0 & 0 \\
0 & \lambda_{2}^{j} & 0 \\
0 & 0 & \lambda_{3}^{j}
\end{array}\right] V^{-1} A_{0} \\
t_{j}=\left[\lambda_{1}^{j} w_{1} \lambda_{2}^{j} w_{2} \lambda_{3}^{j} w_{3}\right]\left[\begin{array}{c}
u_{1}^{T} \\
u_{2}^{T} \\
u_{3}^{T}
\end{array}\right] A_{0} \\
t_{j}=\left(\lambda_{1}^{j} w_{1} u_{1}^{T}+\lambda_{2}^{j} w_{2} u_{2}^{T}+\lambda_{3}^{j} w_{3} u_{3}^{T}\right) A_{0}
\end{gathered}
$$

where,

$$
w_{1}=\left[\begin{array}{lll}
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0
$$

Then,

$$
\begin{gathered}
\hat{t_{j}}=\frac{\left(\lambda_{2}^{j} w_{2} u_{2}^{T}+\lambda_{3}^{j} w_{3} u_{3}^{T}\right)}{\left\|\left(\lambda_{2}^{j} w_{2} u_{2}^{T}+\lambda_{3}^{j} w_{3} u_{3}^{T}\right)\right\|} \\
\hat{t_{j}}=\frac{\left(w_{2} u_{2}^{T}+\frac{\lambda_{3}^{j}}{\lambda_{2}^{j}} w_{3} u_{3}^{T}\right)}{\left\|\left(w_{2} u_{2}^{T}+\frac{\lambda_{3}^{j}}{\lambda_{2}^{j}} w_{3} u_{3}^{T}\right)\right\|} \\
\lim _{j \rightarrow \infty}=\frac{w_{2} u_{2}^{T} A_{0}}{\left\|w_{2} u_{2}^{T} A_{0}\right\|}=\frac{u_{2}^{T} A_{0}}{\left\|u_{2}^{T} A_{0}\right\|}
\end{gathered}
$$

Tangent:
At $P_{1}=\left\langle\frac{1}{2},-\frac{1}{2}\right\rangle=\left\langle\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right\rangle$
At $\left.P_{2}=<\frac{1}{2}, \frac{1}{2}>=<\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$
At $P_{3}=\langle-1,0\rangle$

Assignment 4.2: Differential Geometry (10 Points)

a) Sketch a 2D curve with constant non-zero curvature. Explain your drawing.

A circle has constant curvature equal to ± 1 divided by its radius everywhere.
b) Sketch a finite 2D curve which has regions of negative, positive, and zero curvature. Explain your drawing.

c) Provide a real life example of a 3D curve with non-zero torsion. Explain your choice.

Imagine a corkscrew / solenoid / slinky. There is no plane which can intersect the entire curve, thus the curve has non-zero torsion somewhere (in fact, it has non-zero torsion everywhere).
d) Given the curve below, which starts at point A and ends at point B , has length l, and is arameterized using arc-length parametrization $s \in[0, l]$ mark the point on the curve at parameter value $s=l / 4$. Explain your marking.

Arc-length parametrization means that the curve is stroked at a constant speed

1. Due to symmetrical pattern, we can first find the mid point as $\mathrm{s}=\frac{l}{2}$.
2. $\frac{2 l}{3}-\frac{l}{2} \frac{l / 6}{l / 2}=\frac{1}{3}$ Then the rest takes over one third of the arc on the right hand side.
e) Prove that the curves $F(t)=\left(t, t^{2}-4\right) t \in[0,1]$ and $G(t)=\left(2 t-2,4 t^{2}-8 t\right) t \in[1,1.5]$ are geometrically equivalent.

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{l}
t \\
t^{2}-4
\end{array}\right. \\
& g(t)=\left\{\begin{array}{l}
2 t-2 \\
4 t^{2}-8 t
\end{array}\right.
\end{aligned}
$$

Let

$$
\begin{gathered}
\phi(t)=2 t-2 \\
\phi(t)^{2}-4=4 t^{2}-8 t \\
{[2(t-1)]^{2}-4=4\left(t^{2}-2 t+1\right)-4=4 t^{2}-8 t}
\end{gathered}
$$

LHS $=$ RHS. Thus geometric equivalence proven.
f) Given the curve $F(t)=(t, t)$ over the interval $t \in[0, s]$, write down the formula for the length of the curve as a function of s.

The curve is a straight line from $F(0)=(0,0)$ to $F(s)=(s, s)$ and thus has length

$$
\left\|\left[\begin{array}{l}
s \\
s
\end{array}\right]-\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\|=\sqrt{(s)^{2}+(s)^{2}}=\sqrt{2} \cdot s
$$

