CPSC 424 Assignment 1

Term: September 2022, Instructor: Alla Sheffer, sheffa@cs.ubc.ca, http://www.ugrad.cs.ubc.ca//cs424

Due: Sep 19/2022 in class

Assignment 1.1: Curve Representation: Lines (9 Points)

Given the points, $P_{0}=(1,0), P_{1}=(5,3), P_{2}=(1,3)$.
a) Find the implicit equation of an infinite straight line going through $\left\{P_{0}, P_{1}\right\}$.
b) Find the implicit equation of an infinite straight line going through $\left\{P_{0}, P_{2}\right\}$.
c) Convert the implicit equation in a) to explicit form, if it's possible. Show your work. If it's not possible to convert, explain your reasons.
d) Convert the implicit equation in b) to explicit form, if it's possible. Show your work. If it's not possible to convert, explain your reasons.
e) Find the parametric equation for the straight line passing through $\left\{P_{0}, P_{1}\right\}$.

Assignment 1.2: Curve Representation: Closed Curves (12 Points)

Implicit functions are often used to separate samples identified as being inside a given shape from those identified as being outside. For instance given a set of points I in 2D space identified as inside, and a set O identified as outside, one can define a closed curve separating the two by devising an implicit function F that is positive for all $p \in I$ $(F(p)>0)$ and negative for all $p \in O(F(p)<0)$. The separating curve is then defined by all points p where $F(p)=0$.
a) Given the following sets $I=\{(1,1)\}, O=\{(-1,0),(0,3)\}$ devise an implicit curve F that separates them. Write down the equation of F and sketch it below.
b) Is F unique, or are there other implicit functions that can be used to separate these sets?
c) Given the following sets $I=\{(0,0),(3,0),(6,0)\}, O=\{(-1,0),(1,0),(4,0),(7,0)\}$ devise an implicit curve F that separates them. Write down the equation of F and sketch it below.
d) Is F unique, or are there other implicit functions that can be used to separate these sets?

Assignment 1.3: Lagrange Polynomials (10 Points)

Given a set of $k+1$ pairs of point positions $x_{i} \in R^{N}$ and corresponding parameter values $t_{i}:\left(t_{0}, x_{0}\right),\left(t_{1}, x_{1}\right), \ldots,\left(t_{k}, x_{k}\right)$, we can use the following polynomial function $F(t)$ of degree up to k to create a curve in R^{N} that interpolates them:

$$
\begin{equation*}
F(t)=\sum_{i=0}^{k} L_{i}(t) \cdot x_{i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{i}(t)=\prod_{0 \leq m \leq k, m \neq i} \frac{t-t_{m}}{t_{i}-t_{m}} \tag{2}
\end{equation*}
$$

a) Given two points:

- $t_{0}=0, x_{0}=(3,2)$,
- $t_{1}=2, x_{1}=(6,1)$,
write down the interpolating polynomial. Show your work. Sketch/Plot the resulting curve. Hint 1: plug in additional values of t to get the corresponding points. Hint 2: feel free to use software to plot it.
b) Given four points:
- $t_{0}=0, x_{0}=(3,2)$,
- $t_{1}=1, x_{1}=(6,1)$,
- $t_{2}=2, x_{2}=(6,6)$,
- $t_{3}=3, x_{3}=(3,10)$,
write down the interpolating polynomial. Show your work. Sketch/Plot the resulting curve. Hint 1: plug in additional values of t to get the corresponding points. Hint 2: feel free to use software to plot it.

