Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. (20 points, Sipser problems 5.17 and 5.18)

(a) (10 points) Prove that the Post Correspondence Problem is decidable if the alphabet is unary, i.e., $\Sigma = \{1\}$.

Solution (sketch): If the PCP instance has a tile of the form $\frac{1^i}{1^j}$, then that tile solves the problem. Otherwise, if there is at least one tile of the form $\frac{1^i}{1^j}$ with $i > j$ and one with $i < j$, then it is straightforward to solve the problem. Finally, if all tiles have more 1’s on the top than on the bottom (or all have more on the bottom than on the top), then the problem is not solvable.

(b) (10 points) Prove that the Post Correspondence Problem is undecidable if the alphabet is binary, i.e., $\Sigma = \{0, 1\}$.

Solution (sketch): Consider any instance of PCP with some alphabet, Σ_1. Let $k = \lceil \log_2 |\Sigma_1| \rceil$. We can encode each symbol of Σ_1 with k symbols of $\{0, 1\}$. With this encoding, every tile will have a top string whose length is a multiple of k and likewise for the bottom string. This ensures that the strings of $\{0, 1\}$ that encode symbols of Σ_1 will stay properly aligned, and the new, binary, problem is solvable iff the original problem is solvable.

2. (30 points, Sipser problem 5.21) Let $AMBIG_{CFG} = \{G \mid G$ describes an ambiguous CFG$\}$. Show that $AMBIG_{CFG}$ is undecidable. (Hint: Use a reduction from PCP. Given a PCP instance $\Sigma = \{T, B \}$. Construct a CFG G with the rules:

$$S \rightarrow T | B$$

$$T \rightarrow t_1 T a_1 | \ldots | t_k T a_k | t_1 a_1 | \ldots | t_k a_k$$

$$B \rightarrow b_1 B a_1 | \ldots | b_k B a_k | b_1 a_1 | \ldots | b_k a_k,$$

where $a_1 \ldots a_k$ are new terminal symbols. Prove that this reduction works.)

Solution (sketch): If the PCP problem has a solution, i_1, i_2, \ldots, i_m such that $t_{i_1} t_{i_2} \ldots t_{i_m} = b_1 b_2 \ldots b_m$, then $S \Rightarrow T \Rightarrow t_1 t_{i_2} \ldots t_{i_m} a_1 a_2 \ldots a_k a_1$ and $S \Rightarrow B \Rightarrow b_1 b_2 \ldots b_k a_1 \ldots a_2 a_1$. Because $t_{i_1} t_{i_2} \ldots t_{i_m} = b_1 b_2 \ldots b_m$, these two derivations produce the same string. Thus, G is ambiguous.

Now, I’ll show that if G is ambiguous, then the PCP problem has a solution. The critical observation is that a grammar with starts symbol T has the rules given above is unambiguous, as there is only one way to get any suffix of a_i symbols. Likewise, a grammar that starts with B is unambiguous. So, if G is ambiguous, there must be a string, $x \in L(G)$ such that $S \Rightarrow T \Rightarrow x$ and $S \Rightarrow B \Rightarrow x$. The derivation gives a solution to the PCP problem (in fact, the solution is the reverse of the string of a_i’s at the end of x).

3. (35 points, Sipser problem 5.26) Define a two-headed finite automaton (2HDFA) to be a deterministic finite automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can be independently controlled to move in either direction. The tape of a 2HDFA is finite and is just large enough to contain the input plus a left-endmarker, \langle, and a right-endmarker, \rangle. A 2HDFA may not move either of its heads beyond either delimiter. A 2HDFA accepts by entering a special accept state.

(a) (10 points) Describe a 2HDFA that recognizes the language $\{a^n b^n c^n \mid n \geq 0\}$. You don’t need to specify all the details of the transition function. Just write a few sentences explaining how it works.

Solution (sketch): Build a 2HDFA that starts by moving its first head one square to the right to reach a a. If it reaches a b or c it can immediately reject and if it reaches a \langle it can immediately accept. Now, move the second head to the right until it reaches a b. If it reaches a c or a \rangle first, the machine rejects. Scan
both heads to the right thereby pairing up a and b symbols. When the left head reaches a b, the right head should be at its first c; otherwise, reject. Now, compare the number of b’s and c’s in the same way. If they are equal, accept; otherwise, reject.

(b) \(10\) points Let \(A_{2HDFA} = \{M \# w \mid M\) describes a 2H DFA that accepts \(w\}\). Show that \(A_{2HDFA}\) is Turing-decidable.
Solution (sketch): Because the tape is bounded, a 2H DFA has a finite number of configurations: \((|w| + 2)^2|Q|\) because each tape head has \(|w| + 2\) possible positions, and the machine has \(|Q|\) possible states (assuming \(Q\) is the set of states for the machine). Thus, it is sufficient to simulate that 2H DFA for that many steps. If it accepts by then, then accept. Otherwise, the 2H DFA must be in a loop and we can reject.

(c) \(15\) points Let \(E_{2HDFA} = \{ M \mid M\) describes a 2H DFA such that \(L(M) = \emptyset\}\). Show that \(E_{2HDFA}\) is not Turing-decidable. (Hint: use computational histories.)
Solution (sketch): We can basically use the same method as for part (a). The 2H DFA moves its first head one square to the right (of the \(\vdash\)) to the first symbol of the first configuration. It moves its second head to the right to the first symbol of the second configuration. Now, it scans the two heads to the right making sure that the configuration under the right head is a valid successor of the configuration under the left head. The 2H DFA also notes if the configuration under the right head is an accepting configuration. If it reaches the right-endmarker having seen a valid sequence of configurations with the final one being in an accepting state for \(M\), then the 2H DFA accepts. Otherwise, the 2H DFA rejects.

4. \(35\) points, See Sipser problem 5.31 Let
\[
f(x) = \begin{cases}
3x + 1, & \text{if } x \text{ is odd} \\
x/2, & \text{if } x \text{ is even}
\end{cases}
\]
for any integer \(x \geq 0\). Starting from \(x\), obtain the sequence \(x, f(x), f(f(x)), \ldots\) Stop if you ever reach 1. This sequence is known as the “hailstone” sequence for \(x\). For example if \(x = 23\), then you get the sequence: 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive computer tests have shown that every starting point from 1 through \(2.88 \times 10^{18}\) produces a sequence that ends in 1 (see http://en.wikipedia.org/wiki/Collatz_conjecture). The Collatz conjecture is that all positive starting points end up at 1, and this conjecture is unsolved.
Show that the Collatz conjecture is Turing-reducible to \(TOTAL_{TM}\).
Note: Sipser seems to be asking to show a reduction to \(A_{TM}\) but I couldn’t think of any way to do that.

Solution (sketch): Build a TM, \(M\), whose input strings are encodings of integers. On input \(w\), \(M\) computes the hailstone sequence and halts (e.g. i accepts) if it reaches 1. Otherwise, \(M\) loops. \(M\) is total (halts on all inputs) iff the Collatz conjecture is true.
5. (35 points, Sipser problem 5.34) Let P be a PDA and $WW = \{ww \mid w \in \{0,1\}^*\}$. Use computational histories to show that the question of whether P accepts some string in WW is undecidable.

Solution (sketch): Given a string $M \#x$ where M describes a TM and x describes an input to M, we’ll build a PDA that accepts a string of the form $h\$h\$ iff $x \in L(M)$. As we described in the Nov. 10 notes, we’ll write the history as $C_0C_1^R C_2 C_3^R \ldots C_n$, where C_0 is the initial configuration, C_n is the final configuration (reversed if n is odd, even-indexed configurations are written in normal order, and odd-indexed configurations are reversed.

Our PDA will push C_0 onto its stack while confirming that it is the initial configuration for M running with input w. For each odd indexed configuration, the PDA pops the previous configuration off of its stack and verifies that the new configuration is the successor of the previous one. When the PDA reads the first $\$, it skips configuration C_0 and then pushes C_1 onto the stack. This time, it reads the configurations confirming that each even-indexed configuration is the successor of the previous odd-indexed configuration. The PDA accepts if all of these checks for valid successors of configurations pass and if the final configuration is an accepting one. This PDA accepts a string of the form ww iff M accepts x.

Note that this PDA may accept strings of the form $y\$z\$ where $y \neq z$ even if M does not accept x. This is because our construction relies on the separate check that the input is of the form ww that can’t be done by a PDA to ensure that the two passes over the history are checking the same history.

6. (45 points) The RSA encryption method relies on the assumption that it is difficult to factor large numbers. However, no one knows whether or not there is a polynomial time algorithm for factoring. However, there does exist a polynomial time algorithm that will determine whether or not the integer represented by N (a binary string) is prime or composite, but if N is composite, this algorithm doesn’t determine the factors.

Now, consider a TM, M, that does the following when run with input N, a binary encoding of an integer:

1. Check if N is prime (e.g., using the algorithm described above). If N is prime, M writes the string “0” on its tape and halts. Otherwise, it continues to step 2.
2. Find f a factor of N with $1 < f < N$. M then writes the binary encoding of f on its tape and halts.

Describe how you can implement the second step of this algorithm with a method that will find f in polynomial time iff there is a polynomial time algorithm for factoring. In other words, your algorithm should be one that runs in polynomial time if factoring is polynomial, and in super-polynomial time otherwise.

Hints: (1) Use diagonalization. (2) Remember that big-O analysis ignores constant factors, even *really big* ones.

Solution (sketch): If factoring is polynomial time, then there exists some TM, M that when run with the encoding of an integer n on its tape, computes some non-trivial factor of n and halts with that factor written on its tape. Furthermore, there is such a TM that performs its computation in polynomial time.

Let M_i be the i^{th} TM in some enumeration sequence. Now, run the following program:

```plaintext
for i = 1 to \infty do
  for j = 1 to i do
    run $M_j$ with input $n$ for $i$ steps.
    if $M_j$ halts with in $i$ steps
      check to see if the string on its tape is a non-trivial factor of $n$.
      if so, accept.
  od
od
```

This computation is guaranteed to terminate because n is composite. From step 1 of the machine described in the problem, and there is some TM that will compute the factors of n. Now, consider the case if factoring is
polynomial time. Then there is some TM M_j that finds a factor of n in polynomial time. Note that the existence of M_j does not depend on whether or not we know that factory is polynomial time. It only depends on whether or not factoring actually is polynomial time. Let $\ell(n)$ denote the length of the string that encodes n, and note that $\ell(n) \approx \log n$. If M_j takes time $f(\ell(n))$ time to find a factor, where f is a polynomial (the length of the string that describes n is $\Theta(\log n)$, then the total time to perform step 2 is roughly $O((j + f(\ell(n))^3))$. However, j is a constant. So this is $O(f^3(\ell(n)))$ which is a polynomial in $\ell(n)$. Thus, this is a factoring algorithm that is guaranteed to run in polynomial time iff factoring is in polynomial time.